64 resultados para Hot orogen
The influence of hot-working and ageing on notched-strength and ductility of aluminium alloy AA6082.
Resumo:
Accurate predictions of combustor hot streak migration enable the turbine designer to identify high-temperature regions that can limit component life. It is therefore important that these predictions are achieved within the short time scales of a design process. This article compares temperature measurements of a circular hot streak through a turning duct and a research turbine with predictions using a three-dimensional Reynolds-averaged Navier-Stokes solver. It was found that the mixing length turbulence model did not predict the hot streak dissipation accurately. However, implementation of a very simple model of the free stream turbulence (FST) significantly improved the exit temperature predictions on both the duct and research turbine. One advantage of the simple FST model described over more complex alternatives is that no additional equations are solved. This makes the method attractive for design purposes, as it is not associated with any increase in computational time.
Resumo:
This paper describes a method of improving the cooling of the hub region of high-pressure turbine (HPT) rotor by making better use of the unsteady coolant flows originating from the upstream vane. The study was performed computationally on an engine HPT stage with representative inlet hot streak and vane coolant conditions. An experimental validation study of hot streak migration was undertaken on two low-speed test facilities. The unsteady mechanisms that transport hot and cold fluid within the rotor hub region are first examined. It was found that vortex-blade interaction dominated the unsteady transport of hot and cold fluid in the rotor hub region. This resulted in the transport of hot fluid onto the rotor hub and pressure surface, causing a peak in the surface gas temperatures. The vane film coolant was found to have only a limited effect in cooling this region. A new cooling configuration was thus examined which exploits the unsteadiness in rotor hub to aid transport of coolant towards regions of high rotor surface temperatures. The new coolant was introduced from a slot upstream of the vane. This resulted in the feed of slot coolant at a different phase and location relative to the vane film coolant within the rotor. The slot coolant was entrained into the unsteady rotor secondary flows and transported towards the rotor hub-pressure surface region. The slot coolant reduced the peak time-averaged rotor temperatures by a similar amount as the vane film coolant despite having only a sixth of the coolant mass flow. Copyright © 2008 by ASME.
Resumo:
This work reports on thermal characterization of SOI (silicon on insulator) CMOS (complementary metal oxide semiconductor) MEMS (micro electro mechanical system) gas sensors using a thermoreflectance (TR) thermography system. The sensors were fabricated in a CMOS foundry and the micro hot-plate structures were created by back-etching the CMOS processed wafers in a MEMS foundry using DRIE (deep reactive ion etch) process. The calibration and experimental details of the thermoreflectance based thermal imaging setup, used for these micro hot-plate gas sensor structures, are presented. Experimentally determined temperature of a micro hot-plate sensor, using TR thermography and built-in silicon resistive temperature sensor, is compared with that estimated using numerical simulations. The results confirm that TR based thermal imaging technique can be used to determine surface temperature of CMOS MEMS devices with a high accuracy. © 2010 EDA Publishing/THERMINIC.
Resumo:
The microstructure and mechanical properties of sintered stainless steel powder, of composition AISI 420, have been measured. Ball-milled powder comprising nanoscale grains was sintered to bulk specimens by two alternative routes: hot-pressing and microlaser sintering. The laser-sintered alloy has a porosity of 6% and comprises a mixture of delta ferrite and tempered martensite, and the relative volume fraction varies along the axis of the specimen due to a thermal cycle that evolves with progressive deposition. In contrast, the hot-pressed alloy has a porosity of 0.7% and exhibits a martensitic lath structure with carbide particles at the boundaries of the prior austenite grains. These differences in microstructure lead to significant differences in mechanical properties. For example, the uniaxial tensile strength of the hot-pressed material is one-half of its compressive strength, due to void initiation at the carbide particles at the prior austenite grain boundaries. Nanoindentation measurements reveal a size effect in hardness and also reveal the sensitivity of hardness to the presence of mechanical polishing and electropolishing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper studies on-chip communication with non-ideal heat sinks. A channel model is proposed where the variance of the additive noise depends on the weighted sum of the past channel input powers. It is shown that, depending on the weights, the capacity can be either bounded or unbounded in the input power. A necessary condition and a sufficient condition for the capacity to be bounded are presented. © 2007 IEEE.
Resumo:
Some of the earliest theoretical speculation, stimulated by the growth of semiconductor superlattices, focused on novel devices based on vertical transport through engineered band structures; Esaki and Tsu promised Bloch oscillators in narrow mini-band systems and Kazarinov and Suris contemplated electrically stimulated intersubband transitions as sources of infrared radiation. Nearly twenty years later these material systems have been perfected, characterized and understood and experiments are emerging that test some of these original concepts for novel submillimetre wave electronics. Here we describe recent experiments on intersubband emission in quantum wells stimulated by resonant tunnelling currents. A critical issue at this time is devising a way to achieve population inversion. Other experiments explore 'saturation' effects in narrow miniband transport. Thermal saturation may be viewed as a precursor to Bloch oscillation if the same effects can be induced with an applied electric field.