36 resultados para Grafting compatibility


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planar plasmonic devices are becoming attractive for myriad applications, owing to their potential compatibility with standard microelectronics technology and the capability for densely integrating a large variety of plasmonic devices on a chip. Mitigating the challenges of using plasmonics in on-chip configurations requires precise control over the properties of plasmonic modes, in particular their shape and size. Here we achieve this goal by demonstrating a planar plasmonic graded-index lens focusing surface plasmons propagating along the device. The plasmonic mode is manipulated by carving subwavelength features into a dielectric layer positioned on top of a uniform metal film, allowing the local effective index of the plasmonic mode to be controlled using a single binary lithographic step. Focusing and divergence of surface plasmons is demonstrated experimentally. The demonstrated approach can be used for manipulating the propagation of surface plasmons, e.g., for beam steering, splitting, cloaking, mode matching, and beam shaping applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we show dipole-assisted photogated switching by covalent grafting of photoactive molecules to conducting polymers. Photochromic spiropyran molecules were covalently attached to polyaniline (PANI) nanowires via N-alkylation reaction to the quinoic part of PANI. Upon irradiation with ultraviolet light spiropyran transformed to a large dipole containing molecule, merocyanine form. We show that this transformation leads to a substantial (ca. 2 orders of magnitude) increase in conductance of the photochromic PANI nanowires, which were evident by an increase in field-effect mobility and calculated band gap narrowing of the system. Finally, this transformation was found to be fully reversible with no significant photofatigue. © 2011 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We experimentally demonstrate a self-aligned approach for the fabrication of nanoscale hybrid silicon-plasmonic waveguide fabricated by local oxidation of silicon (LOCOS). Implementation of the LOCOS technique provides compatibility with standard complementary metal-oxide-semiconductor technology and allows avoiding lateral misalignment between the silicon waveguide and the upper metallic layer. We directly measured the propagation and the coupling loss of the fabricated hybrid waveguide using a near-field scanning optical microscope. The demonstrated structure provides nanoscale confinement of light together with a reasonable propagation length of ∼100 μm. As such, it is expected to become an important building block in future on-chip optoelectronic circuitry. © 2010 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic nanoparticles are frequently coated with SiO2to improve their functionality and bio-compatibility in a range of biomedical and polymer nanocomposile applications. In this paper, a scalable flame aerosol technology is used to produce highly dispersible, superparamagnetic iron oxide nanoparticles hermetically coaled with silica to retain full magnetization performance. Iron oxide particles were produced by flame spray pyrolysis (FSP) of iron acelylacetonale in xylene/acetonitrile solutions, and the resulting aerosol was in situ coaled with SiO2 by oxidation of swirling hexamethlydisiloxane vapor. The process allows independent control of the core Fe2O3, particle properties and the thickness of their silica coaling film. This ensures that the non-magnetic SiO2 layer can be closely controlled and minimized. The optimal SiO2 content for complete (hermetic) encapsulation of the magnetic core particles was determined by isopropanol chemisorption. The magnetization of Fe2O3 coated with about 2 nm thin SiO2 layers was nearly identical lo that of uncoated, pure Fe2O3 nanoparlicles.