55 resultados para Fluxo laminar
Resumo:
The majority of computational studies of confined explosion hazards apply simple and inaccurate combustion models, requiring ad hoc corrections to obtain realistic flame shapes and often predicting an order of magnitude error in the overpressures. This work describes the application of a laminar flamelet model to a series of two-dimensional test cases. The model is computationally efficient applying an algebraic expression to calculate the flame surface area, an empirical correlation for the laminar flame speed and a novel unstructured, solution adaptive numerical grid system which allows important features of the solution to be resolved close to the flame. Accurate flame shapes are predicted, the correct burning rate is predicted near the walls, and an improvement in the predicted overpressures is obtained. However, in these fully turbulent calculations the overpressures are still too high and the flame arrival times too low, indicating the need for a model for the early laminar burning phase. Due to the computational expense, it is unrealistic to model a laminar flame in the complex geometries involved and therefore a pragmatic approach is employed which constrains the flame to propagate at the laminar flame speed. Transition to turbulent burning occurs at a specified turbulent Reynolds number. With the laminar phase model included, the predicted flame arrival times increase significantly, but are still too low. However, this has no significant effect on the overpressures, which are predicted accurately for a baffled channel test case where rapid transition occurs once the flame reaches the first pair of baffles. In a channel with obstacles on the centreline, transition is more gradual and the accuracy of the predicted overpressures is reduced. However, although the accuracy is still less than desirable in some cases, it is much better than the order of magnitude error previously expected.
Resumo:
The successful utilization of an array of silicon on insulator complementary metal oxide semiconductor (SOICMOS) micro thermal shear stress sensors for flow measurements at macro-scale is demonstrated. The sensors use CMOS aluminum metallization as the sensing material and are embedded in low thermal conductivity silicon oxide membranes. They have been fabricated using a commercial 1 μm SOI-CMOS process and a post-CMOS DRIE back etch. The sensors with two different sizes were evaluated. The small sensors (18.5 ×18.5 μm2 sensing area on 266 × 266 μm2 oxide membrane) have an ultra low power (100 °C temperature rise at 6mW) and a small time constant of only 5.46 μs which corresponds to a cut-off frequency of 122 kHz. The large sensors (130 × 130 μm2 sensing area on 500 × 500 μm2 membrane) have a time constant of 9.82 μs (cut-off frequency of 67.9 kHz). The sensors' performance has proven to be robust under transonic and supersonic flow conditions. Also, they have successfully identified laminar, separated, transitional and turbulent boundary layers in a low speed flow. © 2008 IEEE.
Resumo:
The present study aims to provide insight into the parameters affecting practical laminar-flow-control suction power requirements for a commercial laminar-flying-wing transport aircraft. It is shown that there is a minimum power requirement independent of the suction system design, associated with the stagnation pressure loss in the boundary layer. This requirement increases with aerofoil section thickness, but depends only weakly on Mach number and (for a thick, lightly loaded laminar flying wing) lift coefficient. Deviation from the optimal suction distribution, due to a practical chamber-based architecture, is found to have very little effect on the overall suction coefficient; hence, to a good approximation, the power penalty is given by the product of the optimal suction flow rate coefficient and the average skin pressure drop. In the spanwise direction, through suitable choice of chamber depth, the pressure drop due to frictional and inertial effects may be rendered negligible. Finally, if there are fewer pumps than chambers, the average pressure drop from the aerofoil surface to the pump collector ducts, rather than to the chambers, determines the power penalty. For the representative laminar-flying-wing aircraft parameters considered here, the minimum power associated with boundary-layer losses alone contributes some 80-90% of the total power requirement. © 2011 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
An algorithm to compute the silent base flow sources of sound in a jet is introduced. The algorithm is based on spatiotemporal filtering of the flow field and is applicable to multifrequency sources. It is applied to an axisymmetric laminar jet and the resulting sources are validated successfully. The sources are compared to those obtained from two classical acoustic analogies, based on quiescent and time-averaged base flows. The comparison demonstrates how the silent base flow sources shed light on the sound generation process. It is shown that the dominant source mechanism in the axisymmetric laminar jet is "shear-noise," which is a linear mechanism. The algorithm presented here could be applied to fully turbulent flows to understand the aerodynamic noise-generation mechanism.
Resumo:
In this paper the radial free jet which is produced by a continuous discharge of fluid from the space between two identical, parallel, circular, concentric discs into an infinite region of stagnant fluid of the same density and viscosity is investigated. Both laminar and turbulent jets are considered with analytical solutions being obtained near to the origin of the jet and at large distances along the jet. These asymptotic solutions are matched using a computational technique, and the numerical predictions show very good agreement with all the available experimental data.
Resumo:
A heated rotating cavity with an axial throughflow of cooling air is used as a model for the flow in the cylindrical cavities between adjacent discs of a high-pressure gas-turbine compressor. In an engine the flow is expected to be turbulent, the limitations of this laminar study are fully realised but it is considered an essential step to understand the fundamental nature of the flow. The three-dimensional, time-dependent governing equations are solved using a code based on the finite volume technique and a multigrid algorithm. The computed flow structure shows that flow enters the cavity in one or more radial arms and then forms regions of cyclonic and anticyclonic circulation. This basic flow structure is consistent with existing experimental evidence obtained from flow visualization. The flow structure also undergoes cyclic changes with time. For example, a single radial arm, and pair of recirculation regions can commute to two radial arms and two pairs of recirculation regions and then revert back to one. The flow structure inside the cavity is found to be heavily influenced by the radial distribution of surface temperature imposed on the discs. As the radial location of the maximum disc temperature moves radially outward, this appears to increase the number of radial arms and pairs of recirculation regions (from one to three for the distributions considered here). If the peripheral shroud is also heated there appear to be many radial arms which exchange fluid with a strong cyclonic flow adjacent to the shroud. One surface temperature distribution is studied in detail and profiles of the relative tangential and radial velocities are presented. The disc heat transfer is also found to be influenced by the disc surface temperature distribution. It is also found that the computed Nusselt numbers are in reasonable accord over most of the disc surface with a correlation found from previous experimental measurements. © 1994, MCB UP Limited.
Resumo:
The present study details the conceptual design for a 220-passenger laminar-flying-wing aircraft, utilising distributed suction, with a cruise Mach number of 0.67, over a range of 9000 km. The estimated fuel burn is 13.9 g/pax.km, demonstrating substantial gains relative to current, conventional, passenger aircraft. For comparison, a conventional aircraft with a high-mounted, unswept, wing is designed for the same mission specification, and is shown to have a fuel burn of 15 g/pax.km. Despite significant aerodynamic efficiency gains, the fuel burn of the laminar flying wing is only marginally better as it suffers from a poor cruise engine efficiency and is much heavier. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.