36 resultados para Filosofia Lean
Resumo:
Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Conditional Moment Closure (CMC) is a suitable method for predicting scalars such as carbon monoxide with slow chemical time scales in turbulent combustion. Although this method has been successfully applied to non-premixed combustion, its application to lean premixed combustion is rare. In this study the CMC method is used to compute piloted lean premixed combustion in a distributed combustion regime. The conditional scalar dissipation rate of the conditioning scalar, the progress variable, is closed using an algebraic model and turbulence is modelled using the standard k-e{open} model. The conditional mean reaction rate is closed using a first order CMC closure with the GRI-3.0 chemical mechanism to represent the chemical kinetics of methane oxidation. The PDF of the progress variable is obtained using a presumed shape with the Beta function. The computed results are compared with the experimental measurements and earlier computations using the transported PDF approach. The results show reasonable agreement with the experimental measurements and are consistent with the transported PDF computations. When the compounded effects of shear-turbulence and flame are strong, second order closures may be required for the CMC. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Combustion in stratified mixtures is envisaged in practical energy systems such as direct-injection spark-ignited (DISI) car engines, gas turbines, for reducing CO2 and pollutant emissions while protecting their efficiency. The mixture gradients change the fundamental properties of the flame, especially by a difference in temperature and composition between the burnt gases and those of a flame consuming a homogeneous mixture. This paper presents an investigation of the properties of the flame propagating in a lean homogeneous mixture after ignition in a richer mixture according to the magnitude of the stratification. Three magnitudes of stratification are investigated. The local flame burning velocity is determined by an original PIV algorithm developed previously. The local equivalence ratio in the fresh gases is measured from anisole PLIF. From the simultaneous PIV-PLIF measurements, the flame burning velocities conditioned on the local stretch rate and equivalence ratio in fresh gases are measured. The flame propagating through the homogeneous lean mixture has properties depending on the ignition conditions in the stratified layer. The flame propagating in the lean mixture is back-supported longer for ignition under the richer condition. The change of stretch sensitivity and burning velocity of the flame in the lean mixture is measured over time for the three magnitudes of mixture stratification investigated. The ignition in richer mixtures compensates for the nonequidiffusion effect of lean propane flame and sustains its robustness to stretch. The flame propagation in the lean homogeneous mixture is enhanced by ignition in a richer stratified layer, as much by their robustness to stretch as by an increase in the flame speed or the burning velocity. The decay time of this influence of the stratification, called memory effect, is determined. © 2013 The Combustion Institute.
Resumo:
This paper aims to elucidate practitioners' understanding and implementation of Lean in Product Development (LPD). We report on a workshop held in the UK during 2012. Managers and engineers from four organizations discussed their understanding of LPD and their ideas and practice regarding management and assessment of value and waste. The study resulted in a set of insights into current practice and lean thinking from the industry perspective. Building on this, the paper introduces a balanced value and waste model that can be used by practitioners as a checklist to identify issues that need to be considered when applying LPD. The main results indicate that organizations tend to focus on waste elimination rather than value enhancement in LPD. Moreover, the lean metrics that were discussed by the workshop participants do not link the strategic level with the operational one, and poorly reflect the value and waste generated in the process. Future directions for research are explored, and include the importance of a balanced approach considering both value and waste when applying LPD, and the need to link lean metrics with value and waste levels.