31 resultados para FOREST STREAM
Filtro por publicador
- JISC Information Environment Repository (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aquatic Commons (82)
- ARCA - Repositório Institucional da FIOCRUZ (2)
- Archive of European Integration (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (9)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (1)
- Brock University, Canada (7)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (31)
- CentAUR: Central Archive University of Reading - UK (140)
- Center for Jewish History Digital Collections (3)
- Chapman University Digital Commons - CA - USA (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (129)
- Cochin University of Science & Technology (CUSAT), India (10)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (3)
- Duke University (10)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (36)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (5)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (7)
- Greenwich Academic Literature Archive - UK (11)
- Helda - Digital Repository of University of Helsinki (92)
- Indian Institute of Science - Bangalore - Índia (79)
- Instituto Politécnico do Porto, Portugal (15)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (14)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (77)
- Queensland University of Technology - ePrints Archive (98)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (22)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (1)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (2)
- University of Michigan (5)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
We present Random Partition Kernels, a new class of kernels derived by demonstrating a natural connection between random partitions of objects and kernels between those objects. We show how the construction can be used to create kernels from methods that would not normally be viewed as random partitions, such as Random Forest. To demonstrate the potential of this method, we propose two new kernels, the Random Forest Kernel and the Fast Cluster Kernel, and show that these kernels consistently outperform standard kernels on problems involving real-world datasets. Finally, we show how the form of these kernels lend themselves to a natural approximation that is appropriate for certain big data problems, allowing $O(N)$ inference in methods such as Gaussian Processes, Support Vector Machines and Kernel PCA.