53 resultados para Electromechanical modes
Resumo:
Superconducting journal bearings have been investigated for use in flywheel systems. We report on the zero-field cooled and field-cooled stiffness of these bearings. They are made up of radial magnet rings with alternating polarities, a pole pitch of 11 mm and a surface field of 0.1 T. Field-cooled stiffness of the journal bearings increased four times over the zero-field-cooled stiffness. © 2005 IEEE.
Resumo:
We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of multi-walled carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. In particular, we examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates.
Resumo:
Globally unstable wakes with co-flow at intermediate Reynolds numbers are studied, to quantify important spatial regions for the development and control of the global instability. One region of high structural sensitivity is found close to the inlet for all wakes, in agreement with previous findings for cylinder wakes. A second, elongated region of high structural sensitivity is seen downstream of the first one for unconfined wakes at Re = 400. When base flow modifications are considered, a spatially oscillating sensitivity pattern is found inside the downstream high structural sensitivity region. This implies that the same change in the base flow can either destabilize or stabilize the flow, depending on the exact position where it is applied. It is shown that the sensitivity pattern remains unchanged for different choices of streamwise boundary conditions and numerical resolution. Actual base flow modifications are applied in selected configurations, and the linear global modes recomputed. It is confirmed that the linear global eigenvalues move according to the predicted sensitivity pattern for small amplitude base flow modifications, for which the theory applies. We also look at the implications of a small control cylinder on the flow. Only the upstream high sensitivity region proves to be robust in terms of control, but one should be careful not to disturb the flow in the downstream high sensitivity region, in order to achieve control. The findings can have direct implications on the numerical resolution requirements for wakes at higher Reynolds numbers. Furthermore, they provide one more possible explanation to why confined wakes have a more narrow frequency spectrum than unconfined wakes.
Resumo:
The role of geometrical confinement on collective cell migration has been recognized but has not been elucidated yet. Here, we show that the geometrical properties of the environment regulate the formation of collective cell migration patterns through cell-cell interactions. Using microfabrication techniques to allow epithelial cell sheets to migrate into strips whose width was varied from one up to several cell diameters, we identified the modes of collective migration in response to geometrical constraints. We observed that a decrease in the width of the strips is accompanied by an overall increase in the speed of the migrating cell sheet. Moreover, large-scale vortices over tens of cell lengths appeared in the wide strips whereas a contraction-elongation type of motion is observed in the narrow strips. Velocity fields and traction force signatures within the cellular population revealed migration modes with alternative pulling and/or pushing mechanisms that depend on extrinsic constraints. Force transmission through intercellular contacts plays a key role in this process because the disruption of cell-cell junctions abolishes directed collective migration and passive cell-cell adhesions tend to move the cells uniformly together independent of the geometry. Altogether, these findings not only demonstrate the existence of patterns of collective cell migration depending on external constraints but also provide a mechanical explanation for how large-scale interactions through cell-cell junctions can feed back to regulate the organization of migrating tissues.
Resumo:
The design of an SLM-based mode demultiplexer is discussed and mode division multiplexing is performed using the LP0,1 and LP 0,2 modes, representing the first demonstration to propagate channels on modes with the same azimuthal index. Mode multiplexed transmission over 2 km of 50-μm OM2 fiber demonstrates a modal selectivity of 16 dB and an OSNR penalty of 1.5 dB for the transmission of 2×56 Gb/s QPSK signals. © 2012 IEEE.