45 resultados para Eastern Malleable Iron Company
An investigation into the information exchange between a consultant and client company: a case study
Resumo:
This report deals with collaborations of engineering consultants and clients in the automobile industry.
In these relationships three main challenges have been identified which have to be addressed by the consultancies. Therefore, the research takes the viewpoint of the consulting side. The challenges are
(i) the appropriate project goal definition;
(ii) achieving client satisfaction; and
(iii) dealing with international clients.
An investigation of such a relationship carried out on a case study shows that improvements can be achieved through communication support. The ways to do that are proposed.
Resumo:
The spinning off of Cambridge Semiconductor Ltd (Camsemi) from the High Voltage Microelectronics Lab at Cambridge University is discussed. The technology originated from Cambridge University and was subsequently developed and commercialized as PowerBrane by Camsemi. The paper also discusses the business model and the enabling financial factors that led to the formation of Camsemi as a fables IC company, including access to seed funding from University and the subsequent investments of venture capital in several rounds. © 2011 IEEE.
Resumo:
This paper presents an analytical modelling approach for the Brushless Doubly-Fed Machine (BDFM) taking iron saturation into account. A generalised coupled-circuit model is developed which considers stator and rotor teeth saturation effects. A method of calculating the machine inductance parameters is presented which can be implemented in time-stepping simulations. The model has been implemented in MATLAB/Simulink and verified by Finite Element analysis and experimental tests. The tests are carried out on a 180 frame size BDFM. Flux search coils have been utilised to measure airgap and teeth flux densities. © 2010 IEEE.
Resumo:
Superparamagnetic iron oxide nanoparticles were synthesized by injecting ferrocene vapor and oxygen into an argon/helium DC thermal plasma. Size distributions of particles in the reactor exhaust were measured online using an aerosol extraction probe interfaced to a scanning mobility particle sizer, and particles were collected on transmission electron microscopy (TEM) grids and glass fiber filters for off-line characterization. The morphology, chemical and phase composition of the nanoparticles were characterized using TEM and X-ray diffraction, and the magnetic properties of the particles were analyzed with a vibrating sample magnetometer and a magnetic property measurement system. Aerosol at the reactor exhaust consisted of both single nanocrystals and small agglomerates, with a modal mobility diameter of 8-9 nm. Powder synthesized with optimum oxygen flow rate consisted primarily of magnetite (Fe 3O 4), and had a room-temperature saturation magnetization of 40.15 emu/g, with a coercivity and remanence of 26 Oe and 1.5 emu/g, respectively. © Springer Science+Business Media, LLC 2011.
Resumo:
We study the Fe-catalyzed chemical vapor deposition of carbon nanotubes by complementary in situ grazing-incidence X-ray diffraction, in situ X-ray reflectivity, and environmental transmission electron microscopy. We find that typical oxide supported Fe catalyst films form widely varying mixtures of bcc and fcc phased Fe nanoparticles upon reduction, which we ascribe to variations in minor commonly present carbon contamination levels. Depending on the as-formed phase composition, different growth modes occur upon hydrocarbon exposure: For γ-rich Fe nanoparticle distributions, metallic Fe is the active catalyst phase, implying that carbide formation is not a prerequisite for nanotube growth. For α-rich catalyst mixtures, Fe3C formation more readily occurs and constitutes part of the nanotube growth process. We propose that this behavior can be rationalized in terms of kinetically accessible pathways, which we discuss in the context of the bulk iron-carbon phase diagram with the inclusion of phase equilibrium lines for metastable Fe3C. Our results indicate that kinetic effects dominate the complex catalyst phase evolution during realistic CNT growth recipes. © 2012 American Chemical Society.
Resumo:
The behaviour of cast-iron tunnel segments used in London Underground tunnels was investigated using the 3-D finite element (FE) method. A numerical model of the structural details of cast-iron segmental joints such as bolts, panel and flanges was developed and its performance was validated against a set of full-scale tests. Using the verified model, the influence of structural features such as caulking groove and bolt pretension was examined for both rotational and shear loading conditions. Since such detailed modelling of bolts increases the computational time when a full scale segmental tunnel is analysed, it is proposed to replace the bolt model to a set of spring models. The parameters for the bolt-spring models, which consider the geometry and material properties of the bolt, are proposed. The performance of the combined bolt-spring and solid segmental models are evaluated against a more conventional shell-spring model. © 2014 Elsevier Ltd.
Resumo:
© 2014 AIP Publishing LLC. Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2and pure Fe2O3particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.