264 resultados para ELECTRON-PHONON


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electron cyclotron wave resonant methane plasma discharge was used for the high rate deposition of hydrogenated amorphous carbon (a-C:H). Deposition rates of up to ∼400 Å/min were obtained over substrates up to 2.5 in. in diameter with a film thickness uniformity of ∼±10%. The deposited films were characterised in terms of their mass density, sp3 and hydrogen contents, C-H bonding, intrinsic stress, scratch resistance and friction properties. The deposited films possessed an average sp3 content, mass density and refractive index of ∼58%, 1.76 g/cm3 and 2.035 respectively.Mechanical characterisation indicated that the films possessed very low steady-state coefficients of friction (ca. 0.06) and a moderate shear strength of ∼141 MPa. Nano-indentation measurements also indicated a hardness and elastic modulus of ∼16.1 and 160 GPa respectively. The critical loads required to induce coating failure were also observed to increase with ion energy as a consequence of the increase in degree of ion mixing at the interface. Furthermore, coating failure under scratch test conditions was observed to take place via fracture within the silicon substrate itself, rather than either in the coating or at the film/substrate interface. © 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-pressure methane plasma generated by electron cyclotron wave resonance was characterized in terms of electron temperature, plasma density and composition. Methane plasmas were commonly used in the deposition of hydrogenated amorphous carbon thin films. Little variation in the plasma chemistry was observed by mass spectrometry measurements of the gas phase with increasing electron temperature. The results show that direct electron-impact reactions exert greater influence on the plasma chemistry than secondary ion-neutral reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of polymer nanocomposites by electron microscopy has been attempted since last decade. Main drives for this effort were analysis of dispersion and alignment of fillers in the matrix. Sample preparation, imaging modes and irradiation conditions became particularly challenging due to the small dimension of the fillers and also to the mechanical and conductive differences between filler and matrix. To date, no standardized dispersion and alignment process or characterization procedures exist in the trade. Review of current state of the art on characterization of polymer nanocomposites suggests that the most innovative electron and ion beam microscopy has not yet been deployed in this material system. Additionally, recently discovered functionalities of these composites, such as electro and photoactuation are amenable to the investigation of the atomistic phenomena by in situ transmission electron microscopy. The possibility of using innovative thinning techniques is presented. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the Nanolith parallel electron-beam writing head was discussed. The fabrication and electrical characteristics of carbon nanotube-based microcathodes for use in the lithographic system were described. The microcathode exhibited a peak current of 10.5 μA at 48 V when operated with a duty cycle of 0.5 percent.