96 resultados para ELECTRON-MOBILITY TRANSISTOR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluates the technique used to improve the latching characteristics of the 200 V n-type superjunction (SJ) lateral insulated-gate bipolar transistor (LIGBT) on a partial silicon-on-insulator. SJ IGBT devices are more prone to latch-up than standard IGBTs due to the presence of a strong pnp transistor with the p layer serving as an effective collector of holes. The initial SJ LIGBT design latches at about 23 V with a gate voltage of 5 V with a forward voltage drop (VON) of 2 V at 300 Acm2. The latch-up current density is 1100 Acm2. The latest SJ LIGBT design shows an increase in latch-up voltage close to 100 V without a significant penalty in VON. The latest design shows a latch-up current density of 1195 A cm2. The enhanced robustness against static latch-up leads to a better forward bias safe operating area. © 1963-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely reported that threshold voltage and on-state current of amorphous indium-gallium-zinc-oxide bottom-gate thin-film transistors are strongly influenced by the choice of source/drain contact metal. Electrical characterisation of thin-film transistors indicates that the electrical properties depend on the type and thickness of the metal(s) used. Electron transport mechanisms and possibilities for control of the defect state density are discussed. Pilling-Bedworth theory for metal oxidation explains the interaction between contact metal and amorphous indium-gallium-zinc-oxide, which leads to significant trap formation. Charge trapping within these states leads to variable capacitance diode-like behavior and is shown to explain the thin-film transistor operation. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contact resistance has a significant impact on the electrical characteristics of thin film transistors. It limits their maximum on-current and affects their subsequent behavior with bias. This distorts the extracted device parameters, in particular, the field-effect mobility. This letter presents a method capable of accounting for both the non-ohmic (nonlinear) and ohmic (linear) contact resistance effects solely based upon terminal I-V measurements. Applying our analysis to a nanocrystalline silicon thin film transistor, we demonstrate that contact resistance effects can lead to a twofold underestimation of the field-effect mobility. © 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical detection of solid-state charge qubits requires ultrasensitive charge measurement, typically using a quantum point contact or single-electron-transistor, which imposes strict limits on operating temperature, voltage and current. A conventional FET offers relaxed operating conditions, but the back-action of the channel charge is a problem for such small quantum systems. Here, we discuss the use of a percolation transistor as a measurement device, with regard to charge sensing and backaction. The transistor is based on a 10nm thick SOI channel layer and is designed to measure the displacement of trapped charges in a nearby dielectric. At cryogenic temperatures, the trapped charges result in strong disorder in the channel layer, so that current is constrained to a percolation pathway in sub-threshold conditions. A microwave driven spatial Rabi oscillation of the trapped charge causes a change in the percolation pathway, which results in a measurable change in channel current. © The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A gate-modulated nanowire oxide photosensor is fabricated by electron-beam lithography and conventional dry etch processing.. The device characteristics are good, including endurance of up to 10(6) test cycles, and gate-pulse excitation is used to remove persistent photoconductivity. The viability of nanowire oxide phototransistors for high speed and high resolution applications is demonstrated, thus potentially expanding the scope of exploitation of touch-free interactive displays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the potential of graphene in ultra-high speed circuits. To date, most of high-frequency graphene circuits typically consist of a single transistor integrated with a few passive components. The development of multi-transistor graphene integrated circuits operating at GHz frequencies can pave the way for applications in which high operating speed is traded off against power consumption and circuit complexity. Novel vertical and planar devices based on a combination of graphene and layered materials could broaden the scope and performances of future devices. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dense arrays of high aspect ratio Si micro-pyramids have been formed by cumulative high intensity laser irradiation of doped Si wafers in an SF6 environment. A comparative study using nanosecond (XeCl, 308 nm) and femtosecond (Ti: Sapphire, 800 nm and KrF, 248 nm) laser pulses has been performed in this work. The influence of pulse duration and ambient gas pressure (SF6) is also presented. Scanning electron microscopy has shown that upon laser irradiation conical features appear on the Si surface in a rather homogenous distribution and with a spontaneous self alignment into arrays. Their lowest tip diameter is 800 nm; while their height reaches up to 90 mum. Secondary tip decoration appears on the surface of the formed spikes. Areas of 2 X 2 mm(2) covered with Si cones have been tested as cold cathode field emitters. After several conditioning cycles, the field emission threshold for the studied Si tips is as low as 2 V/mum, with an emission current of 10(-3) A/cm(2) at 4 V/mum. Even though these structures have smaller aspect ratios than good quality carbon nanotubes, their field emission properties are similar. The simple and direct formation of field emission Si arrays over small pre-selected areas by laser irradiation could lead to a novel approach for the development of electron sources. (C) 2003 Elsevier B.V. All rights reserved.