83 resultados para ELECTRIC-FIELD DOMAINS
Resumo:
A new liquid crystal device structure has been developed using a vertically grown Multi-Wall Carbon NanoTube (MWCNT) as a 3D electrode structure, which allows complicated phase only hologram to be displayed using conventional liquid crystal materials. The nanotubes act as an individual electrode sites that generate an electric field profile, dictating the refractive index profile with the liquid crystal cell. Changing the electric field applied makes it possible to tune the properties to modulate the light in an ideal kinoform. A perfect 3D image can be generated by a computer generated hologram by using the diffraction of the light from the hologram pixels to create an optical wave front that appears to come from 3D object. A multilevel phase modulating device based on nematic LC's is also under progress, which will be used with the LC/CNT devices on an LCOS backplane to project a full 3D image from the kinoform.
Resumo:
It has been widely recognized that the combination of carbon nanotubes (CNTs) and low molar mass thermotropic liquid crystals (tLCs) not only provides a useful way to align CNTs, but also dramatically enhances the tLC performance especially in the liquid crystal display technology. Such CNT-tLC nanocomposites have ignited hopes to address many stubborn problems within the field, such as low contrast, slow response, and narrow view angle. However, this material development has been limited by the poor solubility of CNTs in tLCs. Here, we describe an effective strategy to solve the problem. Prior to integrating with tLCs, pristine CNTs are physically "coated" by a liquid crystalline polymer (LCP) which is compatible with tLCs. The homogeneous CNT-tLC composite obtained in this way is stable for over 6 months, and the concentration of CNTs in tLCs can reach 1 wt %. We further demonstrate the alignment of CNTs at high CNT concentrations by an electric field with a theory to model the impedance response of the CNT-tLC mixture.
Resumo:
The electric field distribution in the super junction power MOSFET is analyzed using analytical modeling and numerical simulations in this paper. The single-event burn-out (SEB) and single-event gate rupture (SEGR) phenomena in this device are studied in detail. It is demonstrated that the super junction device is much less sensitive to SEB and SEGR compared to the standard power MOSFET. The physical mechanism is explained.
Resumo:
In this paper, we demonstrate for the first time that insulative dielectrophoresis can induce size-dependent trajectories of DNA macromolecules. We experimentally use lambda (48.5 kbp) and T4GT7 (165.6 kbp) DNA molecules flowing continuously around a sharp corner inside fluidic channels with a depth of 0.4 mum. Numerical simulation of the electrokinetic force distribution inside the channels is in qualitative agreement with our experimentally observed trajectories. We discuss a possible physical mechanism for the DNA polarization and dielectrophoresis inside confining channels, based on the observed dielectrophoresis responses due to different DNA sizes and various electric fields applied between the inlet and the outlet. The proposed physical mechanism indicates that further extensive investigations, both theoretically and experimentally, would be very useful to better elucidate the forces involved at DNA dielectrophoresis. When applied for size-based sorting of DNA molecules, our sorting method offers two major advantages compared to earlier attempts with insulative dielectrophoresis: Its continuous operation allows for high-throughput analysis, and it only requires electric field strengths as low as approximately 10 Vcm.
Resumo:
This paper describes a new way to perform hydrodynamic chromatography (HDC) for the size separation of particles based on a unique recirculating flow pattern. Pressure-driven (PF) and electro-osmotic flows (EOF) are opposed in narrow glass microchannels that expand at both ends. The resulting bidirectional flow turns into recirculating flow because of nonuniform microchannel dimensions. This hydrodynamic effect, combined with the electrokinetic migration of the particles themselves, results in a trapping phenomenon, which we have termed flow-induced electrokinetic trapping (FIET). In this paper, we exploit recirculating flow and FIET to perform a size-based separation of samples of microparticles trapped in a short separation channel using a HDC approach. Because these particles have the same charge (same zeta potential), they exhibit the same electrophoretic mobility, but they can be separated according to size in the recirculating flow. While trapped, particles have a net drift velocity toward the low-pressure end of the channel. When, because of a change in the externally applied PF or electric field, the sign of the net drift velocity reverses, particles can escape the separation channel in the direction of EOF. Larger particles exhibit a larger net drift velocity opposing EOF, so that the smaller particles escape the separation channel first. In the example presented here, a sample plug containing 2.33 and 2.82 microm polymer particles was introduced from the inlet into a 3-mm-long separation channel and trapped. Through tuning of the electric field with respect to the applied PF, the particles could be separated, with the advantage that larger particles remained trapped. The separation of particles with less than 500 nm differences in diameter was performed with an analytical resolution comparable to that of baseline separation in chromatography. When the sample was not trapped in the separation channel but located further downstream, separations could be carried out continuously rather than in batch. Smaller particles could successfully pass through the separation channel, and particles were separated by size. One of the main advantages of exploiting FIET for HDC is that this method can be applied in quite short (a few millimeters) channel geometries. This is in great contrast to examples published to date for the separation of nanoparticles in much longer micro- and nanochannels.
Resumo:
The carbon nanotube-liquid-crystal (CNT-LC) nanophotonic device is a class of device based on the hybrid combination of a sparse array of multiwall carbon nanotube electrodes grown on a silicon surface in a liquid-crystal cell. The multiwall carbon nanotubes act as individual electrode sites that spawn an electric-field profile, dictating the refractive index profile within the liquid crystal and hence creating a series of graded index profiles, which form various optical elements such as a simple microlens array. We present the refractive index and therefore phase modulation capabilities of a CNT-LC nanophotonic device with experimental results as well as computer modeling and potential applications.
Resumo:
The flexoelectro-optic effect describes the rotation of the optic axis of a short-pitch chiral nematic liquid crystal under the application of an electric field. We investigate the effect in the uniform standing helix, or "Grandjean" configuration. An in-plane electric field is applied. The director profile is determined numerically using a static one-dimensional continuum model with strong surface anchoring. The Berreman method is used to solve for plane-wave solutions to Maxwell's equations, and predict the optical properties of the resulting structure in general cases. By using a chiral nematic with short pitch between crossed polarizers an optical switch may be generated. With no applied field the configuration is nontransmissive at normal incidence, but becomes transmissive with an applied field. For this case, numerical results using the Berreman method are supplemented with an analytic theory and found to be in good agreement. The transmitted intensity as a function of tilt, the contrast ratio, and the tilt required for full intensity modulation are presented. The angular dependence of the transmission is calculated and the isocontrast curves are plotted. For typical material and cell parameters a switching speed of 0.017 ms and contrast ratio of 1500:1 at normal incidence are predicted, at a switch-on tilt of 41.5 degrees. Experimental verification of the analytic and numerical models is provided.
Resumo:
We demonstrated the nonvolatile memory functionality of ZnO nanowire field effect transistors (FETs) using mobile protons that are generated by high-pressure hydrogen annealing (HPHA) at relatively low temperature (400 °C). These ZnO nanowire devices exhibited reproducible hysteresis, reversible switching, and nonvolatile memory behaviors in comparison with those of the conventional FET devices. We show that the memory characteristics are attributed to the movement of protons between the Si/SiO(2) interface and the SiO(2)/ZnO nanowire interface by the applied gate electric field. The memory mechanism is explained in terms of the tuning of interface properties, such as effective electric field, surface charge density, and surface barrier potential due to the movement of protons in the SiO(2) layer, consistent with the UV photoresponse characteristics of nanowire memory devices. Our study will further provide a useful route of creating memory functionality and incorporating proton-based storage elements onto a modified CMOS platform for FET memory devices using nanomaterials.
Resumo:
We present electro-optic characteristics of a transparent nanophotonic device fabricated on quartz substrate based on multiwall carbon nanotubes and nematic liquid crystals (LCs). The nanotube electrodes spawn a Gaussian electric field to three dimensionally address the LC molecules. The electro-optic characteristics of the device were investigated to optimize the device performance and it was found that lower driving voltages were suitable for microlens array and phase modulation applications, while higher driving voltages with a holding voltage can be used for display-related applications.
Resumo:
This paper presents an analytical model for the determination of the basic breakdown properties of three-dimensional (3D)-RESURF/CoolMOS/super junction type structures. To account for the two-dimensional (2D) effect of the 3D-RESURF action, 2D models of the electric field distribution are developed. Based on these, expressions are derived for the breakdown voltage as a function of doping concentration and physical dimensions. In addition to cases where the drift regions are fully depleted, the model developed is also applicable to situations involving drift regions which are almost depleted. Accuracy of the analytical approach is verified by comparison with numerical results obtained from the MEDICI device simulator.
Resumo:
The flexoelectric behaviour of a hypertwisted chiral nematic bimesogenic liquid crystal is presented. Through detailed electro-optic measurements, with particular emphasis on the switching properties, we demonstrate remarkably high optical axis tilt angles. The material studied possessed a room temperature nematic phase and aligned easily on cooling under the application of a moderate electric field. Switching times of the order of 500 μs and contrast ratios of 90:1 are readily achieved. The tilt angles, measured using the rotating analyser technique, were found to be practically temperature independent and linear with the applied field. Tilt angles of 22.5° were obtained with moderate applied fields of 9.4 V/μm whilst fields of 25 V/μm yielded tilt angles of 45°. We believe these are the highest tilt angles ever recorded for such fields. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.
Resumo:
In this paper we will describe new bimesogenic nematic liquid crystals that have high flexoelectro-optic coefficients (e/K),of the order of 1.5 CN 1 m-1, high switching angles, up to 100° and fast response times, of the order of 100μs or less. We will describe devices constructed, using the ULH texture that may be switched to the optimum angle of 45° for a birefringence based device with the fields of 4Vμm-1 over a wide temperature range. Such devices use an "in plane" optical switching mode, have gray scale capability and a wide viewing angle. We will describe devices using the USH or Grandjean texture that have an optically isotropic "field off" black state, uses "in plane" switching E fields, to give an induced birefringence phase device, with switching times of the order of 20μs. We will briefly describe new highly reflective Blue Phase devices stable over a 50V temperature range in which an electric field is used to switch the reflection from red to green, for example. Full RGB reflections may be obtained with switching times of a few milliseconds. Finally we will briefly mention potential applications including high efficiency RGB liquid crystal laser sources. © 2006 SID.
Resumo:
In this work, we examine the phenomenon of random lasing from the smectic A liquid crystal phase. We summarise our results to date on random lasing from the smectic A phase including the ability to control the output from the sample using applied electric fields. In addition, diffuse random lasing is demonstrated from the electrohydrodynamic instabilities of a smectic A liquid crystal phase that has been doped with a low concentration of ionic impurities. Using a siloxane-based liquid crystal doped with ionic impurities and a laser dye, nonresonant random laser emission is observed from the highly scattering texture of the smectic A phase which is stable in zero-field. With the application of a low frequency alternating current electric field, turbulence is induced due to motion of the ions. This is accompanied by a decrease in the emission linewidth and an increase in the intensity of the laser emission. The benefit in this case is that a field is not required to maintain the texture as the scattering and homeotropic states are both stable in zero field. This offers a lower power consumption alternative to the electric-field induced static scattering sample.
Resumo:
In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.
Resumo:
The influence of mechanical constraint imposed by device geometry upon the switching response of a ferroelectric thin film memory capacitor is investigated. The memory capacitor was represented by two-dimensional ferroelectric islands of different aspect ratio, mechanically constrained by surrounding materials. Its ferroelectric non-linear behaviour was modeled by a crystal plasticity constitutive law and calculated using the finite element method. The switching response of the device, in terms of remnant charge storage, was determined as a function of geometry and constraint. The switching response under applied in-plane tensile stress and hydrostatic pressure was also studied experimentally. Our results showed that (1) the capacitor's aspect ratio could significantly affect the clamping behaviour and thus the remnant polarization, (2) it was possible to maximise the switching charge through the optimisation of the device geometry, and (3) it is possible to find a critical switching stress at zero electric field and a critical coercive field at zero residual stress. © 2009 Materials Research Society.