31 resultados para Dynamic artificial neural network
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (37)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (19)
- Boston University Digital Common (30)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (16)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (31)
- CentAUR: Central Archive University of Reading - UK (67)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (42)
- Cochin University of Science & Technology (CUSAT), India (8)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (6)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (52)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (7)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (93)
- Queensland University of Technology - ePrints Archive (77)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (95)
- Research Open Access Repository of the University of East London. (5)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (12)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (21)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (26)
- WestminsterResearch - UK (3)
Resumo:
In natural languages multiple word sequences can represent the same underlying meaning. Only modelling the observed surface word sequence can result in poor context coverage, for example, when using n-gram language models (LM). To handle this issue, paraphrastic LMs were proposed in previous research and successfully applied to a US English conversational telephone speech transcription task. In order to exploit the complementary characteristics of paraphrastic LMs and neural network LMs (NNLM), the combination between the two is investigated in this paper. To investigate paraphrastic LMs' generalization ability to other languages, experiments are conducted on a Mandarin Chinese broadcast speech transcription task. Using a paraphrastic multi-level LM modelling both word and phrase sequences, significant error rate reductions of 0.9% absolute (9% relative) and 0.5% absolute (5% relative) were obtained over the baseline n-gram and NNLM systems respectively, after a combination with word and phrase level NNLMs. © 2013 IEEE.