33 resultados para Drying kinetics
Resumo:
Chemical vapor deposition on copper is the most widely used method to synthesize graphene at large scale. However, the clear understanding of the fundamental mechanisms that govern this synthesis is lacking. Using a vertical-flow, cold-wall reactor with short gas residence time we observe the early growths to study the kinetics of chemical vapor deposition of graphene on copper foils and demonstrate uniform synthesis at wafer scale. Our results indicate that the growth is limited by the catalytic dissociative dehydrogenation on the surface and copper sublimation hinders the graphene growth. We report an activation energy of 3.1 eV for ethylene-based graphene synthesis. © The Electrochemical Society.
Resumo:
Conventional alkali-activated slag (AAS) cements suffer from significant drying shrinkage which hinders their widespread application. This paper investigates the potential of using commercial reactive MgO to reduce the drying shrinkage of AAS. Two different reactive MgOs were added at a content of 2.5-7.5 wt% of the slag, which was activated by sodium hydroxide and water-glass. The strength and the drying shrinkage of those reactive MgO modified AAS (MAAS) pastes were measured up to 90 days. It is found that MgO with high reactivity accelerated the early hydration of AAS, while MgO with medium reactivity had little effect. The drying shrinkage was significantly reduced by highly reactive MgO but it also generated severe cracking under the dry condition. On the other hand, medium-reactive MgO only showed observable shrinkage-reducing effect after one month, but the cement soundness was improved. The hydration products, analysed by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy techniques, showed that Mg was mainly incorporated in the hydrotalcite-like phases. It is concluded that the curing conditions and the time of hydrotalcite-like phases formation and their quantity are crucial to the developed strength and shrinkage reduction properties of MAAS, which are highly dependent on the reactivity and content of reactive MgO. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
The optical, structural and electrical properties of poly(3,4- ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) thin films printed by roll-to-roll gravure have been investigated. Corona treatment has been applied to enhance the adhesion of PEDOT:PSS on PolyEthylene Terephthalate (PET) web. It has been found that there was a stronger in-depth surface modification of PET with the increase of corona efficiency; however, the adhesion of PEDOT:PSS was not actually affected. Also, Spectroscopic Ellipsometry and Atomic Force Microscopy have been used to extract information on the mechanisms that define PEDOT:PSS properties. The increase of the drying temperature of the PEDOT:PSS films has been found to reduce the remaining water inside the films and lead to the decrease of the PEDOT:PSS particles size. © 2011 Elsevier B.V. All rights reserved.