39 resultados para Constant-pressure conditions
Resumo:
There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ=400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J. Fluid Mech.). Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows.
Resumo:
The mismatch in thermal response between a High Pressure Compressor (HPC) drum and casing is a limiting factor in the reduction of compressor clearance. An experimental test rig has been used to demonstrate the concept of radial inflow to reduce the thermal time constant of HPC discs. The testing uses a simulated idle - Maximum Take Off (MTO) - idle transient in order to measure the thermal response directly. The testing is fully scaled in the dimensionless sense to engine conditions. A simple closure model based on lumped capacitance is used to illustrate the scope of potential benefits. The proof-of-concept testing shows that HPC disc time constant reductions of the order 2 are feasible with a radial-inflow bleed of only 4% of bore flow at scaled MTO conditions. Using the experimental results, the simple closure modelling suggests that for a stage with a significant mismatch in thermal response, reductions in 2D axis-symmetric clearance of as much as 50% at MTO conditions may be possible along with significant scope for improvements at cruise conditions. Copyright © 2013 by ASME.
Resumo:
In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapour phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size inter-phase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to that of Yau and Young [1] and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions. Copyright © 2013 by Solar Turbines Incorporated.
Resumo:
Results of numerical investigations of the wet steam flow in a three stage low pressure steam turbine test rig are presented. The test rig is a scale model of a modern steam turbine design and provides flow measurements over a range of operating conditions which are used for detailed comparisons with the numerical results. For the numerical analysis a modern CFD code with user defined models for specific wet steam modelling is used. The effect of different theoretical models for nucleation and droplet growth are examined. It is shown that heterogeneous condensation is highly dependent on steam quality and, in this model turbine with high quality steam, a homogeneous theory appears to be the best choice. The homogeneous theory gives good agreement between the test rig traverse measurements and the numerical results. The differences in the droplet size distribution of the three stage turbine are shown for different loads and modelling assumptions. The different droplet growth models can influence the droplet size by a factor of two. An estimate of the influence of unsteady effects is made by means of an unsteady two-dimensional simulation. The unsteady modelling leads to a shift of nucleation into the next blade row. For the investigated three stage turbine the influence due to wake chopping on the condensation process is weak but to confirm this conclusion further investigations are needed in complete three dimensions and on turbines with more stages. Copyright © 2011 by ASME.
Resumo:
The influence of non-equilibrium condensation on the flow field and performance of a three stage low pressure model steam turbine is examined using modern three dimensional CFD techniques. An equilibrium steam model and a non-equilibrium steam model, which accounts for both subcooling and condensation effects, are used, and have been verified by comparison with test data in an earlier publication [1]. The differences in the calculated flow field and turbine performance with these models show that the latent heat released during condensation influences both the thermodynamic and the aerodynamic performance of the turbine, leading to a change in inlet flow angles of about 5°. The calculated three dimensional flowfield is used to investigate the magnitude and distribution of the additional thermo-dynamic wetness loss arising from steam condensation under non-equilibrium flow conditions. Three simple methods are described to calculate this, and all show that this amounts to around 6.5% of the total losses at the design condition. At other load conditions the wetness losses change in magnitude and axial distribution in the turbine. © 2010 by ASME.
Resumo:
Most of the current understanding of tip leakage flows has been derived from detailed cascade experiments. However, the cascade model is inherently approximate since it is difficult to simulate the boundary conditions present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. This problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer. More realistic tests can be performed on high-speed turbines, but the experimental fidelity and resolution achievable in such set-ups is limited. In order to examine the differences between cascade models and real-engine behavior, the influence of boundary conditions on the tip leakage flow in an unshrouded high pressure turbine rotor is investigated using RANS calculations. This study examines the influence of the rotor inlet condition and relative casing motion. A baseline calculation with a simplified inlet condition and no relative endwall motion exhibits similar behavior to cascade studies. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or relative casing motion. However when both of these conditions are applied simultaneously the pattern of leakage flow is very different, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving this change and the impact on leakage losses and modeling requirements. Copyright © 2013 by ASME.
Resumo:
The control of NOX emissions by exhaust gas recirculation (EGR) is of widespread application. However, despite dramatic improvements in all aspects of engine control, the subtle mixing processes that determine the cylinder-to-cylinder distribution of the recirculated gas often results in a mal-distribution that is still an issue for the engine designer and calibrator. In this paper we demonstrate the application of a relatively straightforward technique for the measurement of the absolute and relative dilution quantity in both steady state and transient operation. This was achieved by the use of oxygen sensors based on standard UEGO (universal exhaust gas oxygen) sensors but packaged so as to give good frequency response (∼ 10 ms time constant) and be completely insensitivity to the sample pressure and temperature. Measurements can be made at almost any location of interest, for example exhaust and inlet manifolds as well as EGR path(s), with virtually no flow disturbance. At the same time, the measurements yield insights into air-path dynamics. We argue that "dilution", as indicated by the deviation of the oxygen concentration from that of air, is a more appropriate parameter than EGR rate in the context of NOX control, especially for diesel engines. Experimental results are presented for the EGR distribution in a current production light duty 4-cylinder diesel engine in which significant differences were found in the proportion of the recirculated gas that reached each cylinder. Even the individual inlet runners of the cylinders exhibited very different dilution rates - differences of nearly 50% were observed at some conditions. An application of such data may be in the improvement of calibration and validation of CFD and other modelling techniques. Copyright © 2014 SAE International.
Resumo:
The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8-21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results. © 2014 Taylor & Francis.
Resumo:
A model for off-wall boundary conditions for turbulent flow is investigated. The objective of such a model is to circumvent the need to resolve the buffer layer near the wall, by providing conditions in the logarithmic layer for the overlying flow. The model is based on the self-similarity of the flow at different heights in the logarithmic layer. It was first proposed by Mizuno and Jiménez (2013), imposing at the boundary plane a velocity field obtained on-the-fly from an overlying region. The key feature of the model was that the lengthscales of the field were rescaled to account for the self-similarity law. The model was successful at sustaining a turbulent logarithmic layer, but resulted in some disagreements in the flow statistics, compared to fully-resolved flows. These disagreements needed to be addressed for the model to be of practical application. In the present paper, a more refined, wavelength-dependent rescaling law is proposed, based on the wavelength-dependent dynamics in fully-resolved flows. Results for channel flow show that the new model eliminates the large artificial pressure fluctuations found in the previous one, and a better agreement is obtained in the bulk properties, the flow fluctuations, and their spectral distribution across the whole domain. © Published under licence by IOP Publishing Ltd.