40 resultados para Cervical Movement
Resumo:
Humans are able to learn tool-handling tasks, such as carving, demonstrating their competency to make and vary the direction of movements in unstable environments. It has been shown that when a single reaching movement is repeated in unstable dynamics, the central nervous system (CNS) learns an impedance internal model to compensate for the environment instability. However, there is still no explanation for how humans can learn to move in various directions in such environments. In this study, we investigated whether and how humans compensate for instability while learning two different reaching movements simultaneously. Results show that when performing movements in two different directions, separated by a 35° angle, the CNS was able to compensate for the unstable dynamics. After adaptation, the force was found to be similar to the free movement condition, but stiffness increased in the direction of instability, specifically for each direction of movement. Our findings suggest that the CNS either learned an internal model generalizing over different movements, or alternatively that it was able to switch between specific models acquired simultaneously. © 2008 IEEE.
Resumo:
Humans are able to learn tool-handling tasks, such as carving, demonstrating their competency to make movements in unstable environments with varied directions. When faced with a single direction of instability, humans learn to selectively co-contract their arm muscles tuning the mechanical stiffness of the limb end point to stabilize movements. This study examines, for the first time, subjects simultaneously adapting to two distinct directions of instability, a situation that may typically occur when using tools. Subjects learned to perform reaching movements in two directions, each of which had lateral instability requiring control of impedance. The subjects were able to adapt to these unstable interactions and switch between movements in the two directions; they did so by learning to selectively control the end-point stiffness counteracting the environmental instability without superfluous stiffness in other directions. This finding demonstrates that the central nervous system can simultaneously tune the mechanical impedance of the limbs to multiple movements by learning movement-specific solutions. Furthermore, it suggests that the impedance controller learns as a function of the state of the arm rather than a general strategy. © 2011 the American Physiological Society.
Resumo:
Background: Bradykinesia is a cardinal feature of Parkinson's disease (PD). Despite its disabling impact, the precise cause of this symptom remains elusive. Recent thinking suggests that bradykinesia may be more than simply a manifestation of motor slowness, and may in part reflect a specific deficit in the operation of motivational vigour in the striatum. In this paper we test the hypothesis that movement time in PD can be modulated by the specific nature of the motivational salience of possible action-outcomes. Methodology/Principal Findings: We developed a novel movement time paradigm involving winnable rewards and avoidable painful electrical stimuli. The faster the subjects performed an action the more likely they were to win money (in appetitive blocks) or to avoid a painful shock (in aversive blocks). We compared PD patients when OFF dopaminergic medication with controls. Our key finding is that PD patients OFF dopaminergic medication move faster to avoid aversive outcomes (painful electric shocks) than to reap rewarding outcomes (winning money) and, unlike controls, do not speed up in the current trial having failed to win money in the previous one. We also demonstrate that sensitivity to distracting stimuli is valence specific. Conclusions/Significance: We suggest this pattern of results can be explained in terms of low dopamine levels in the Parkinsonian state leading to an insensitivity to appetitive outcomes, and thus an inability to modulate movement speed in the face of rewards. By comparison, sensitivity to aversive stimuli is relatively spared. Our findings point to a rarely described property of bradykinesia in PD, namely its selective regulation by everyday outcomes. © 2012 Shiner et al.
Resumo:
The movement of Au catalysts during growth of InAs on GaAs nanowires has been carefully investigated by transmission electron microscopy. It has been found that Au catalysts preferentially stay on { 112 } B GaAs sidewalls. Since a {112} surface is composed of a {111} facet and a {002} facet and since {111} facets are polar facets for the zinc-blende structure, this crystallographic preference is attributed to the different interface energies caused by the different polar facets. We anticipate that these observations will be useful for the design of nanowire heterostructure based devices. © 2009 American Institute of Physics.
Resumo:
The human cervix is an important mechanical barrier in pregnancy which must withstand the compressive and tensile forces generated from the growing fetus. Premature cervical shortening resulting from premature cervical remodeling and alterations of cervical material properties are known to increase a woman׳s risk of preterm birth (PTB). To understand the mechanical role of the cervix during pregnancy and to potentially develop indentation techniques for in vivo diagnostics to identify women who are at risk for premature cervical remodeling and thus preterm birth, we developed a spherical indentation technique to measure the time-dependent material properties of human cervical tissue taken from patients undergoing hysterectomy. In this study we present an inverse finite element analysis (IFEA) that optimizes material parameters of a viscoelastic material model to fit the stress-relaxation response of excised tissue slices to spherical indentation. Here we detail our IFEA methodology, report compressive viscoelastic material parameters for cervical tissue slices from nonpregnant (NP) and pregnant (PG) hysterectomy patients, and report slice-by-slice data for whole cervical tissue specimens. The material parameters reported here for human cervical tissue can be used to model the compressive time-dependent behavior of the tissue within a small strain regime of 25%.
Resumo:
The human motor system is remarkably proficient in the online control of visually guided movements, adjusting to changes in the visual scene within 100 ms [1-3]. This is achieved through a set of highly automatic processes [4] translating visual information into representations suitable for motor control [5, 6]. For this to be accomplished, visual information pertaining to target and hand need to be identified and linked to the appropriate internal representations during the movement. Meanwhile, other visual information must be filtered out, which is especially demanding in visually cluttered natural environments. If selection of relevant sensory information for online control was achieved by visual attention, its limited capacity [7] would substantially constrain the efficiency of visuomotor feedback control. Here we demonstrate that both exogenously and endogenously cued attention facilitate the processing of visual target information [8], but not of visual hand information. Moreover, distracting visual information is more efficiently filtered out during the extraction of hand compared to target information. Our results therefore suggest the existence of a dedicated visuomotor binding mechanism that links the hand representation in visual and motor systems.