45 resultados para Central composite design
Resumo:
CLADP is an engineering software program developed at Cambridge University for the interactive computer aided design of feedback control systems. CLADP contains a wide range of tools for the analysis of complex systems, and the assessment of their performance when feedback control is applied, thus enabling control systems to be designed to meet difficult performance objectives. The range of tools within CLADP include the latest techniques in the field whose central theme is the extension of classical frequency domain concepts (well known and well proven for single loop systems) to multivariable or multiloop systems, and by making extensive use of graphical presentation information is provided in a readily understood form.
Resumo:
Piezocomposites that can operate at frequencies above 30 MHz without spurious modes are required in order to develop sufficiently sensitive high frequency arrays for high resolution imaging. However, scaling down of conventional piezocomposite fabrication techniques becomes increasingly difficult as dimensions decrease with increasing frequency. The approach presented here is to use micro-moulded 1-3 piezocomposites and a distribution of piezoelectric segment size and separation. Innovative approaches to composite pattern design, based on a randomized spatial distribution, are presented. Micro-moulding techniques are shown to be suitable for fabricating composites with dimensions required for high frequency composites. Randomized piezocomposite patterns are modeled and are shown to suppress spurious modes.
Resumo:
Tissue engineering offers a paradigm shift in the treatment of back pain. Engineered intervertebral discs could replace degenerated tissue and overcome the limitations of current treatments, which substantially alter the biomechanical properties of the spine. The centre of the disc, the nucleus pulposus, is an amorphous gel with a large bound water content and it can resist substantial compressive loads. Due to similarities in their compositions, hydrogels have frequently been considered as substitutes for the nucleus pulposus. However, there has been limited work characterising the time-dependent mechanical behaviour of hydrogel scaffolds for nucleus pulposus tissue engineering. Poroelastic behaviour, which plays a key role in nutrient transport, is of particular importance. Here, we investigate the time-dependent mechanical properties of gelatin and agar hydrogels and of gelatin-agar composites. The time-dependent properties of these hydrogels are explored using viscoelastic and poroelastic frameworks. Several gel formulations demonstrate comparable equilibrium elastic behaviour to the nucleus pulposus under unconfined compression, but permeability values that are much greater than those of the native tissue. A range of time-dependent responses are observed in the composite gels examined, presenting the opportunity for targeted design of custom hydrogels with combinations of mechanical properties optimized for tissue engineering applications. © 2011 Elsevier Ltd.
Resumo:
Advances in functionality and reliability of carbon nanotube (CNT) composite materials require careful formulation of processing methods to ultimately realize the desired properties. To date, controlled dispersion of CNTs in a solution or a composite matrix remains a challenge, due to the strong van der Waals binding energies associated with the CNT aggregates. There is also insufficiently defined correlation between the microstructure and the physical properties of the composite. Here, we offer a review of the dispersion processes of pristine (non-covalently functionalized) CNTs in a solvent or a polymer solution. We summarize and adapt relevant theoretical analysis to guide the dispersion design and selection, from the processes of mixing/sonication, to the application of surfactants for stabilization, to the final testing of composite properties. The same approaches are expected to be also applicable to the fabrication of other composite materials involving homogeneously dispersed nanoparticles. © 2012 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Measuring capability variations within the population isanimportant process that can be used to support decision making regarding the inclusivity of design for all users, thus allowing the level of exclusion tobe defined veryearly and throughout the design process. Our hands often represent a central feature of the human-task interaction, and therefore, variations in the capabilities of the hands has the potential to exclude people from all or part of the tasks they perform. Data is presented from the performance of 15 people in one of three age groups (18-40, 41-64 and 65+). Using a classification system for defining hand actions the prevalence of different grips in response to a range of physical task demands was mapped in a way that allowed capability to be measured against other variables such as task quality. This was found toenhance thegranularity with which exclusion could be both measured and predicted.
Resumo:
An atrium is a central feature of many modern naturally ventilated building designs. The atrium fills with warm air from the adjoining storeys: this air may be further warmed by direct solar heating in the atrium, and the deep warm layer enhances the flow. In this paper we focus on the degree of flow enhancement achieved by an atrium which is itself 'ventilated' directly, by a low-level connection to the exterior. A theoretical model is developed to predict the steady stack-driven displacement flow and thermal stratification in the building, due to heat gains in the storey and solar gains in the atrium, and compared with the results of laboratory experiments. Direct ventilation of the atrium is detrimental to the ventilation of the storey and the best design is identified as a compromise that provides adequate ventilation of both spaces. We identify extremes of design for which an atrium provides no significant enhancement of the flow, and show that an atrium only enhances the flow in the storey if its upper opening is of an intermediate size, and its lower opening is sufficiently small. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Scalable and cost effective patterning of polymer structures and their surface textures is essential to engineer material properties such as liquid wetting and dry adhesion, and to design artificial biological interfaces. Further, fabrication of high-aspect-ratio microstructures often requires controlled deep-etching methods or high-intensity exposure. We demonstrate that carbon nanotube (CNT) composites can be used as master molds for fabrication of high-aspect-ratio polymer microstructures having anisotropic nanoscale textures. The master molds are made by growth of vertically aligned CNT patterns, capillary densification of the CNTs using organic solvents, and capillary-driven infiltration of the CNT structures with SU-8. The composite master structures are then replicated in SU-8 using standard PDMS transfer molding methods. By this process, we fabricated a library of replicas including vertical micro-pillars, honeycomb lattices with sub-micron wall thickness and aspect ratios exceeding 50:1, and microwells with sloped sidewalls. This process enables batch manufacturing of polymer features that capture complex nanoscale shapes and textures, while requiring only optical lithography and conventional thermal processing. © 2011 The Royal Society of Chemistry.
Resumo:
In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.
Resumo:
Modern Engineering Design involves the deployment of many computational tools. Re- search on challenging real-world design problems is focused on developing improvements for the engineering design process through the integration and application of advanced com- putational search/optimization and analysis tools. Successful application of these methods generates vast quantities of data on potential optimum designs. To gain maximum value from the optimization process, designers need to visualise and interpret this information leading to better understanding of the complex and multimodal relations between param- eters, objectives and decision-making of multiple and strongly conflicting criteria. Initial work by the authors has identified that the Parallel Coordinates interactive visualisation method has considerable potential in this regard. This methodology involves significant levels of user-interaction, making the engineering designer central to the process, rather than the passive recipient of a deluge of pre-formatted information. In the present work we have applied and demonstrated this methodology in two differ- ent aerodynamic turbomachinery design cases; a detailed 3D shape design for compressor blades, and a preliminary mean-line design for the whole compressor core. The first case comprises 26 design parameters for the parameterisation of the blade geometry, and we analysed the data produced from a three-objective optimization study, thus describing a design space with 29 dimensions. The latter case comprises 45 design parameters and two objective functions, hence developing a design space with 47 dimensions. In both cases the dimensionality can be managed quite easily in Parallel Coordinates space, and most importantly, we are able to identify interesting and crucial aspects of the relationships between the design parameters and optimum level of the objective functions under con- sideration. These findings guide the human designer to find answers to questions that could not even be addressed before. In this way, understanding the design leads to more intelligent decision-making and design space exploration. © 2012 AIAA.