162 resultados para Carbon Fibre Reinforced Polymer (CFRP)
Resumo:
In fibre reinforced polymer (FRP) prestressed concrete applications, an FRP tendon must sustain high axial tensile stresses and, if cracks occur, additional dowel forces. The tendon may also be exposed to solutions and so the combined axial-shear stress performance after long-term environmental exposure is important. Experiments were conducted to investigate the combined axial-shear stress failure envelope for unidirectional carbon FRP tendons which had been exposed to either water, salt water or concrete pore solution at 60 °C for approximately 18 months. The underlying load resisting mechanisms were found to depend on the loading configuration, restraint effects and the initial stress state. When saturated, CFRP tendons are likely to exhibit a reduced shear stiffness. However, the ultimate limit state appeared to be fibre-dominated and was therefore less susceptible to reductions due to solution uptake effects. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//1//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.
Resumo:
A model is presented for prediction of the fracture energy of ceramic-matrix composites containing dispersed metallic fibres. It is assumed that the work of fracture comes entirely from pull-out and/or plastic deformation of fibres bridging the crack plane. Comparisons are presented between these predictions and experimental measurements made on a commercially-available composite material of this type, containing stainless steel (304) fibres in a matrix predominantly comprising alumina and alumino-silicate phases. Good agreement is observed, and it's noted that there is scope for the fracture energy levels to be high (~20kJm-2). Higher toughness levels are both predicted and observed for coarser fibres, up to a practical limit for the fibre diameter of the order of 0.5mm. Other deductions are also made concerning strategies for optimisation of the toughness of this type of material. © 2010 Elsevier Ltd.
Resumo:
A preliminary study is presented of the relationship between the microstructural aspects of failure and the fracture energy G//l//C for cracking parallel to the fibres in long-fibre/thermoplastic matrix composites. Fracture energies are measured by a new technique, and fracture surfaces generated by the test are examined by scanning electron microscopy.