43 resultados para Box-counting dimension


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapter 20 Clustering User Data for User Modelling in the GUIDE Multi-modal Set- top Box PM Langdon and P. Biswas 20.1 ... It utilises advanced user modelling and simulation in conjunction with a single layer interface that permits a ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anomaly detection approach is considered for the mine hunting in sonar imagery problem. The authors exploit previous work that used dual-tree wavelets and fractal dimension to adaptively suppress sand ripples and a matched filter as an initial detector. Here, lacunarity inspired features are extracted from the remaining false positives, again using dual-tree wavelets. A one-class support vector machine is then used to learn a decision boundary, based only on these false positives. The approach exploits the large quantities of 'normal' natural background data available but avoids the difficult requirement of collecting examples of targets in order to train a classifier. © 2012 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical description of the turbulent mixing within and the draining of a dense fluid layer from a box connected to a uniform density, quiescent environment through openings in the top and the base of the box is presented in this paper. This is an extension of the draining model developed by Linden et al. (Annu. Rev. Fluid Mech. vol. 31, 1990, pp. 201-238) and includes terms that describe localized mixing within the emptying box at the density interface. Mixing is induced by a turbulent flow of replacement fluid into the box and as a consequence we predict, and observe in complementary experiments, the development of a three-layer stratification. Based on the data collated from previous researchers, three distinct formulations for entrainment fluxes across density interfaces are used to account for this localized mixing. The model was then solved numerically for the three mixing formulations. Analytical solutions were developed for one formulation directly and for a second on assuming that localized mixing is relatively weak though still significant in redistributing buoyancy on the timescale of the draining process. Comparisons between our theoretical predictions and the experimental data, which we have collected on the developing layer depths and their densities show good agreement. The differences in predictions between the three mixing formulations suggest that the normalized flux turbulently entrained across a density interface tends to a constant value for large values of a Froude number FrT, based on conditions of the inflow through the top of the box, and scales as the cube of FrT for small values of FrT. The upper limit on the rate of entrainment into the mixed layer results in a minimum time (tD) to remove the original dense layer. Using our analytical solutions, we bound this time and show that 0.2tE ≈tD tE, i.e. the original dense layer may be depleted up to five times more rapidly than when there is no internal mixing and the box empties in a time tE. © 2010 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The airflow and thermal stratification produced by a localised heat source located at floor level in a closed room is of considerable practical interest and is commonly referred to as a 'filling box'. In rooms with low aspect ratios H/R ≲ 1 (room height H to characteristic horizontal dimension R) the thermal plume spreads laterally on reaching the ceiling and a descending horizontal 'front' forms separating a stably stratified, warm upper region from cooler air below. The stratification is well predicted for H/R ≲ 1 by the original filling box model of Baines and Turner (J. Fluid. Mech. 37 (1968) 51). This model represents a somewhat idealised situation of a plume rising from a point source of buoyancy alone-in particular the momentum flux at the source is zero. In practical situations, real sources of heating and cooling in a ventilation system often include initial fluxes of both buoyancy and momentum, e.g. where a heating system vents warm air into a space. This paper describes laboratory experiments to determine the dependence of the 'front' formation and stratification on the source momentum and buoyancy fluxes of a single source, and on the location and relative strengths of two sources from which momentum and buoyancy fluxes were supplied separately. For a single source with a non-zero input of momentum, the rate of descent of the front is more rapid than for the case of zero source momentum flux and increases with increasing momentum input. Increasing the source momentum flux effectively increases the height of the enclosure, and leads to enhanced overturning motions and finally to complete mixing for highly momentum-driven flows. Stratified flows may be maintained by reducing the aspect ratio of the enclosure. At these low aspect ratios different long-time behaviour is observed depending on the nature of the heat input. A constant heat flux always produces a stratified interior at large times. On the other hand, a constant temperature supply ultimately produces a well-mixed space at the supply temperature. For separate sources of momentum and buoyancy, the developing stratification is shown to be strongly dependent on the separation of the sources and their relative strengths. Even at small separation distances the stratification initially exhibits horizontal inhomogeneity with localised regions of warm fluid (from the buoyancy source) and cool fluid. This inhomogeneity is less pronounced as the strength of one source is increased relative to the other. Regardless of the strengths of the sources, a constant buoyancy flux source dominates after sufficiently large times, although the strength of the momentum source determines whether the enclosure is initially well mixed (strong momentum source) or stably stratified (weak momentum source). © 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A symmetry-adapted version of the Maxwell rule appropriate to periodic bar-and-joint frameworks is obtained, and is further extended to body-and-joint systems. The treatment deals with bodies and forces that are replicated in every unit cell, and uses the point group isomorphic to the factor group of the space group of the framework. Explicit expressions are found for the numbers and symmetries of detectable mechanisms and states of self-stress in terms of the numbers and symmetries of framework components. This approach allows detection and characterization of mechanisms and states of self-stress in microscopic and macroscopic materials and meta-materials. Illustrative examples are described. The notion of local isostaticity of periodic frameworks is extended to include point-group symmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel information-theoretic approach for Bayesian optimization called Predictive Entropy Search (PES). At each iteration, PES selects the next evaluation point that maximizes the expected information gained with respect to the global maximum. PES codifies this intractable acquisition function in terms of the expected reduction in the differential entropy of the predictive distribution. This reformulation allows PES to obtain approximations that are both more accurate and efficient than other alternatives such as Entropy Search (ES). Furthermore, PES can easily perform a fully Bayesian treatment of the model hyperparameters while ES cannot. We evaluate PES in both synthetic and real-world applications, including optimization problems in machine learning, finance, biotechnology, and robotics. We show that the increased accuracy of PES leads to significant gains in optimization performance.