67 resultados para Bone screws


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyapatite-gelatin composites have been proposed as suitable scaffolds for bone and dentin tissue regeneration. There is considerable interest in producing these scaffolds using biomimetic methods due to their low energy costs and potential to create composites similar to the tissues they are intended to replace. Here an existing process used to coat a surface with hydroxyapatite under near physiological conditions, the alternate soaking process, is modified and automated using an inexpensive "off the shelf" robotics kit. The process is initially used to precipitate calcium phosphate coatings. Then, in contrast to previous utilizations of the alternate soaking process, gelatin was added directly to the solutions in order to co-precipitate hydroxyapatite-gelatin composites. Samples were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and nanoindentation. Calcium phosphate coatings formed by the alternate soaking process exhibited different calcium to phosphate ratios, with correspondingly distinct structural morphologies. The coatings demonstrated an interconnected structure with measurable mechanical properties, even though they were 95% porous. In contrast, hydroxyapatite-gelatin composite coatings over 2mm thick could be formed with little visible porosity. The hydroxyapatite-gelatin composites demonstrate a composition and mechanical properties similar to those of cortical bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone as most of living tissues is able, during its entire lifetime, to adapt its internal microstructure and subsequently its associated mechanical properties to its specific mechanical and physiological environment in a process commonly known as bone remodelling. Bone is therefore continuously renewed and micro-damage, accumulated by fatigue or creep, is removed minimizing the risk of fracture. Nevertheless, bone is not always able to repair itself completely. Actually, if bone repairing function is slower than micro-damage accumulation, a type of bone fracture, usually known as "stress fracture", can finally evolve. In this paper, we propose a bone remodelling continuous model able to simulate micro-damage growth and repair in a coupled way and able therefore to predict the occurrence of "stress fractures". The biological bone remodelling process is modelled in terms of equations that describe the activity of basic multicellular units. The predicted results show a good correspondence with experimental and clinical data. For example, in disuse, bone porosity increases until an equilibrium situation is achieved. In overloading, bone porosity decreases unless the damage rate is so high that causes resorption or "stress fracture".