38 resultados para Biochemical variation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss mechanisms which control 2D incidence range are discussed with an emphasis on determining which real in-service geometric variations will have the largest impact. For the majority of engine compressor blades (Minlet>0.55) both the negative and positive incidence limits are controlled by supersonic patches. It is shown that these patches are highly sensitive to the geometric variations close to, and around the leading edge. The variations used in this study were measured from newly manufactured as well as ex-service blades. Over most the high pressure compressor considered, it was shown that manufacture variations dominated. The first part of the paper shows that, despite large geometric variations (~10% of leading edge thickness), the incidence range responded in a linear way. The result of this is that the geometric variations have little effect on the mean incidence range of a row of blades. In the second part of the paper a region of the design space is identified where non-linear behavior can result in a 10% reduction in positive incidence range. The mechanism for this is reported and design guidelines for its avoidance offered. In the final part of the paper, the linear behavior at negative incidence and the transonic nature of the flow is exploited to design a robust asymmetric leading edge with a 5% increase in incidence range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstruction of biochemical reaction networks (BRN) and genetic regulatory networks (GRN) in particular is a central topic in systems biology which raises crucial theoretical challenges in system identification. Nonlinear Ordinary Differential Equations (ODEs) that involve polynomial and rational functions are typically used to model biochemical reaction networks. Such nonlinear models make the problem of determining the connectivity of biochemical networks from time-series experimental data quite difficult. In this paper, we present a network reconstruction algorithm that can deal with ODE model descriptions containing polynomial and rational functions. Rather than identifying the parameters of linear or nonlinear ODEs characterised by pre-defined equation structures, our methodology allows us to determine the nonlinear ODEs structure together with their associated parameters. To solve the network reconstruction problem, we cast it as a compressive sensing (CS) problem and use sparse Bayesian learning (SBL) algorithms as a computationally efficient and robust way to obtain its solution. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical vapour deposition (CVD) grown graphene sheets were investigated using optical-pump terahertz-probe spectroscopy, revealing a dramatic variation in the photoinduced terahertz conductivity of graphene in different atmospheres. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gallium nitride (GaN) has a bright future in high voltage device owing to its remarkable physical properties and the possibility of growing heterostructures on silicon substrates. GaN High Electron Mobility Transistors (HEMTs) are expected to make a strong impact in off line applications and LED drives. However, unlike in silicon-based power devices, the on-state resistance of HEMT devices is hugely influenced by donor and acceptor traps at interfaces and in the bulk. This study focuses on the influence of donor traps located at the top interface between the semiconductor layer and the silicon nitride on the 2DEG density. It is shown through TCAD simulations and analytical study that the 2DEG charge density has an 'S' shape variation with two distinctive 'flat' regions, wherein it is not affected by the donor concentration, and one linear region. wherein the channel density increases proportionally with the donor concentration. We also show that the upper threshold value of the donor concentration within this 'S' shape increases significantly with the AIGaN thickness and the Al mole fraction and is highly affected by the presence of a thin GaN cap layer. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuneable optical sensors have been developed to sense chemical stimuli for a range of applications from bioprocess and environmental monitoring to medical diagnostics. Here, we present a porphyrin-functionalised optical sensor based on a holographic grating. The holographic sensor fulfils two key sensing functions simultaneously: it responds to external stimuli and serves as an optical transducer in the visible region of the spectrum. The sensor was fabricated via a 6 nanosecond-pulsed laser (350 mJ, λ = 532 nm) photochemical patterning process that enabled a facile fabrication. A novel porphyrin derivative was synthesised to function as the crosslinker of a polymer matrix, the light-absorbing material, the component of a diffraction grating, as well as the cation chelating agent in the sensor. The use of this multifunctional porphyrin permitted two-step fabrication of a narrow-band light diffracting photonic sensing structure. The resulting structure can be tuned finely to diffract narrow-band light based on the changes in the fringe spacing within the polymer and the system's overall index of refraction. We show the utility of the sensor by demonstrating its reversible colorimetric tuneability in response to variation in concentrations of organic solvents and metal cations (Cu 2+ and Fe2+) in the visible region of the spectrum (λmax ≈ 520-680 nm) with a response time within 50 s. Porphyrin-functionalised optical sensors offer great promise in fields varying from environmental monitoring to biochemical sensing to printable optical devices. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.