85 resultados para Beman, Nathan S. S. (Nathan Sidney Smith), 1785-1871.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high hole and electron mobilities in nanocrystalline silicon (nc-Si:H) top-gate staggered thin-film transistors (TFTs) fabricated by direct plasma-enhanced chemical vapor deposition (PECVD) at 260°C. The n-channel nc-Si:H TFT with n+ nc-Si:H ohmic contacts shows a field-effect electron mobility (μnFE) of 130 cm2/Vs, which increases to 150 cm2/Vs with Cr-silicide contacts, along with a field-effect hole mobility (μhFE) of 25 cm2/Vs. To the best of our knowledge, the hole and electron mobilities reported here are the highest achieved to date using direct PECVD. © 2005 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A short channel vertical thin film transistor (VTFT) with 30 nm SiN x gate dielectric is reported for low voltage, high-resolution active matrix applications. The device demonstrates an ON/OFF current ratio as high as 10 9, leakage current in the fA range, and a sub-threshold slope steeper than 0.23 V/dec exhibiting a marked improvement with scaling of the gate dielectric thickness. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach is presented to resolve bias-induced metastability mechanisms in hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs). The post stress relaxation of threshold voltage (V(T)) was employed to quantitatively distinguish between the charge trapping process in gate dielectric and defect state creation in active layer of transistor. The kinetics of the charge de-trapping from the SiN traps is analytically modeled and a Gaussian distribution of gap states is extracted for the SiN. Indeed, the relaxation in V(T) is in good agreement with the theory underlying the kinetics of charge de-trapping from gate dielectric. For the TFTs used in this work, the charge trapping in the SiN gate dielectric is shown to be the dominant metastability mechanism even at bias stress levels as low as 10 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-film electronics in its myriad forms has underpinned much of the technological innovation in the fields of displays, sensors, and energy conversion over the past four decades. This technology also forms the basis of flexible electronics. Here we review the current status of flexible electronics and attempt to predict the future promise of these pervading technologies in healthcare, environmental monitoring, displays and human-machine interactivity, energy conversion, management and storage, and communication and wireless networks. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress/recovery measurements demonstrate that even high-performance passivated In-Zn-O/ Ga-In-Zn-O thin film transistors with excellent in-dark stability suffer from light-bias induced threshold voltage shift (ΔV T) and defect density changes. Visible light stress leads to ionisation of oxygen vacancy sites, causing persistent photoconductivity. This makes the material act as though it was n-doped, always causing a negative threshold voltage shift under strong illumination, regardless of the magnitude and polarity of the gate bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composition of amorphous oxide semiconductors, which are well known for their optical transparency, can be tailored to enhance their absorption and induce photoconductivity for irradiation with green, and shorter wavelength light. In principle, amorphous oxide semiconductor-based thin-film photoconductors could hence be applied as photosensors. However, their photoconductivity persists for hours after illumination has been removed, which severely degrades the response time and the frame rate of oxide-based sensor arrays. We have solved the problem of persistent photoconductivity (PPC) by developing a gated amorphous oxide semiconductor photo thin-film transistor (photo-TFT) that can provide direct control over the position of the Fermi level in the active layer. Applying a short-duration (10 ns) voltage pulse to these devices induces electron accumulation and accelerates their recombination with ionized oxygen vacancy sites, which are thought to cause PPC. We have integrated these photo-TFTs in a transparent active-matrix photosensor array that can be operated at high frame rates and that has potential applications in contact-free interactive displays. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this presentation, we report excellent electrical and optical characteristics of a dual gate photo thin film transistor (TFT) with bi-layer oxide channel, which was designed to provide virgin threshold voltage (V T) control, improve the negative bias illumination temperature stress (NBITS) reliability, and offer high photoconductive gain. In order to address the photo-sensitivity of phototransistor for the incoming light, top transparent InZnO (IZO) gate was employed, which enables the independent gate control of dual gate photo-TFT without having any degradation of its photosensitivity. Considering optimum initial V T and NBITS reliability for the device operation, the top gate bias was judiciously chosen. In addition, the speed and noise performance of the photo-TFT is competitive with silicon photo-transistors, and more importantly, its superiority lies in optical transparency. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A temperature-dependent mobility model in amorphous oxide semiconductor (AOS) thin film transistors (TFTs) extracted from measurements of source-drain terminal currents at different gate voltages and temperatures is presented. At low gate voltages, trap-limited conduction prevails for a broad range of temperatures, whereas variable range hopping becomes dominant at lower temperatures. At high gate voltages and for all temperatures, percolation conduction comes into the picture. In all cases, the temperature-dependent mobility model obeys a universal power law as a function of gate voltage. © 2011 IEEE.