48 resultados para B. Porosity
Resumo:
The exponential increase of industrial demand in the past two decades has led scientists to the development of alternative technologies for the fast manufacturing of engineering components, aside from standard and time consuming techniques such as casting or forging.Cold Spray (CS) is a newly developed manufacturing technique, based upon the deposition of metal powder on a substrate due to high energy particle impacts. In this process, the powder is accelerated up to considerable speed in a converging-diverging nozzle, typically using air, nitrogen or helium as a carrier gas. Recent developments have demonstrated significant process capabilities, from the building of mold-free 3D shapes made of various metals, to low porosity and corrosion resistant titanium coatings.In CS, the particle stream characteristics during the acceleration process are important in relation to the final geometry of the coating. Experimental studies have shown the tendency of particles to spread over the nozzle acceleration channel, resulting in a wide exit stream and in the difficulty of producing narrow tracks.This paper presents an investigation on the powder stream characteristics in CS supersonic nozzles. The powder insertion location was varied within the carrier gas flow, along with the geometry of the powder injector, in order to identify their relation with particle trajectories. Computational Fluid Dynamics (CFD) results by Fluent v6.3.26 are presented, along with experimental observations. Different configurations were tested and modeled, giving deposited track geometries of copper and tin ranging from 1. mm to 8. mm in width on metal and polymer substrates. © 2011 Elsevier B.V.
Resumo:
An immersed finite element method is presented to compute flows with complex moving boundaries on a fixed Cartesian grid. The viscous, incompressible fluid flow equations are discretized with b-spline basis functions. The two-scale relation for b-splines is used to implement an elegant and efficient technique to satisfy the LBB condition. On non-grid-aligned fluid domains and at moving boundaries, the boundary conditions are enforced with a consistent penalty method as originally proposed by Nitsche. In addition, a special extrapolation technique is employed to prevent the loss of numerical stability in presence of arbitrarily small cut-cells. The versatility and accuracy of the proposed approach is demonstrated by means of convergence studies and comparisons with previous experimental and computational investigations.
Resumo:
The possibility of using acoustic Bessel beams to produce an axial pulling force on porous particles is examined in an exact manner. The mathematical model utilizes the appropriate partial-wave expansion method in spherical coordinates, while Biot's model is used to describe the wave motion within the poroelastic medium. Of particular interest here is to examine the feasibility of using Bessel beams for (a) acoustic manipulation of fine porous particles and (b) suppression of particle resonances. To verify the viability of the technique, the radiation force and scattering form-function are calculated for aluminum and silica foams at various porosities. Inspection of the results has shown that acoustic manipulation of low porosity (<0.3) spheres is similar to that of solid elastic spheres, but this behavior significantly changes at higher porosities. Results have also shown a strong correlation between the backscattered form-function and the regions of negative radiation force. It has also been observed that the high-order resonances of the particle can be effectively suppressed by choosing the beam conical angle such that the acoustic contribution from that particular mode vanishes. This investigation may be helpful in the development of acoustic tweezers for manipulation of micro-porous drug delivery carrier and contrast agents.
Resumo:
A novel technique is presented to facilitate the implementation of hierarchical b-splines and their interfacing with conventional finite element implementations. The discrete interpretation of the two-scale relation, as common in subdivision schemes, is used to establish algebraic relations between the basis functions and their coefficients on different levels of the hierarchical b-spline basis. The subdivision projection technique introduced allows us first to compute all element matrices and vectors using a fixed number of same-level basis functions. Their subsequent multiplication with subdivision matrices projects them, during the assembly stage, to the correct levels of the hierarchical b-spline basis. The proposed technique is applied to convergence studies of linear and geometrically nonlinear problems in one, two and three space dimensions. © 2012 Elsevier B.V.
Resumo:
YBa 2Cu 3O 7-δ thick films have been deposited onto Ag substrates by the Electrophoretic Deposition (EPD) technique. Different microstructures and electrical behaviours were observed depending on the starting powder. Coatings prepared from commercial powder displayed significant porosity and the superconducting transition width was found to be magnetic-field dependent. Films produced from home-made coprecipitated powder are denser but contain some secondary phases. No dependence of the resistive transition as a function of magnetic field (H 20 Oe) was observed in that case. © 2006 IOP Publishing Ltd.
Resumo:
An infiltration and growth process is here used as an alternative to the classical top-seeded melt-textured growth process for the production of Dy-123 single-domains with finely dispersed small size Dy-211 particles. The starting materials are the 211-particles and a barium and copper rich liquid phase precursor. The infiltration and growth process allows for controlling both the spatial and size distribution of the 211-particles in the final superconducting 123-single-domain. The main parameters (set-ups, maximum processing temperature with respect to the peritectic temperature, nature of reactant, porosity of the 211-preform) of the infiltration and growth process are discussed. Moreover, different processes of chimie douce are shown in order to produce Dy-211 particles with controlled shape and size, particles that can be used as precursors for the infiltration and growth process. © 2005 IOP Publishing Ltd.