56 resultados para Asphalt-rubber
Resumo:
The mechanisms of material removal were studied during the erosion of two unfilled elastomers (natural rubber and epoxidised natural rubber). The effects of impact velocity and of lubrication by silicone oil were investigated. The development of surface features due to single impacts and during the early stages of erosion was followed by scanning electron microscopy. The basic material removal mechanism at impact angles of both 30° and 90° involves the formation and growth of fine fatigue cracks under the tensile surface stresses caused by impact. No damage was observed after single impacts; it was found that many successive impacts are necessary for material removal. It was found that the erosion rate has a very strong dependance on impact velocity above about 50 ms-1.
Resumo:
A popular method used to reduce vibration transmitted from underground railways into nearby buildings is floating-slab track, whereby a concrete slab supporting the two rails is mounted on rubber bearings or steel springs to isolate it from the tunnel invert. This paper adds a track model to a previously developed three-dimensional tunnel model in order to assess the effectiveness of floating-slab track. A slab beam coupled to the tunnel in the wavenumber domain, with the slab bearings represented by an elastic layer, is examined first. A second beam representing the two rails together is then coupled to the slab, and axle masses representing a train are added to the rail beam. Power-spectral densities and RMS levels of soil vibration due to random roughness-displacement excitation between the masses and the rail beam are calculated. Analytical techniques are used to minimise the computational requirements of the model. The results demonstrate the inadequacy of simple mass-spring and Winkler-beam models with rigid foundations for the assessment of the vibration-isolation performance of railway track. They suggest that the achievable insertion loss is modest and that floating the track slab may in fact cause increased transmission of vibration under certain conditions. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The developing vertebrate gut tube forms a reproducible looped pattern as it grows into the body cavity. Here we use developmental experiments to eliminate alternative models and show that gut looping morphogenesis is driven by the homogeneous and isotropic forces that arise from the relative growth between the gut tube and the anchoring dorsal mesenteric sheet, tissues that grow at different rates. A simple physical mimic, using a differentially strained composite of a pliable rubber tube and a soft latex sheet is consistent with this mechanism and produces similar patterns. We devise a mathematical theory and a computational model for the number, size and shape of intestinal loops based solely on the measurable geometry, elasticity and relative growth of the tissues. The predictions of our theory are quantitatively consistent with observations of intestinal loops at different stages of development in the chick embryo. Our model also accounts for the qualitative and quantitative variation in the distinct gut looping patterns seen in a variety of species including quail, finch and mouse, illuminating how the simple macroscopic mechanics of differential growth drives the morphology of the developing gut.
Resumo:
This paper discusses a laboratory study used to characterize bituminous binders based on their dynamic creep resistance. Laboratory testing using four different loading regimes on asphalt mixes with six different bituminous binders was undertaken. Creep cycles to 2% accumulated strain were used to define the creep resistance of the asphalt mixes with the various binders. Underlying viscosities of the bitumens were derived using the Australian Road Research Board (ARRB) Elastometer. Marshall stability was measured on the specimens that were prepared using gyratory compaction. Regression plots were prepared that link creep resistance, underlying viscosity, and Marshall stability. It was found that the ARRB Elastometer is able to measure underlying viscosity, which is a reasonable predictor of dynamic creep resistance. Marshall stability was also shown to be a good indicator of dynamic creep resistance. Therefore, simpler tests such as Marshall stability and Elastometer can be used to rank bituminous materials for asphalt mix design purposes in the laboratory. © 2010 ASCE.