60 resultados para Arnold, Eve , 1913-2012, American


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adhesive properties of the gecko foot have inspired designs of advanced micropatterned surfaces with increased contact areas. We have fabricated micropatterned pillars of vertically aligned carbon nanotube forests with a range of pillar diameters, heights, and spacings (or pitch). We used nanoindentation to measure their elastic and orthogonal adhesion properties and derive their scaling behavior. The patterning of nanotube forests into pillar arrays allows a reduction of the effective modulus from 10 to 15 MPa to 0.1-1 MPa which is useful for developing maximum conformal adhesion. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To extract gas from hydrate reservoirs, it has to be dissociated in situ. This endothermic dissociation process absorbs heat energy from the formation and pore fluid. The heat transfer governs the dissociation rate, which is proportional to the difference between the actual temperature and the equilibrium temperature. This study compares three potential gas production schemes from hydrate-bearing soil, where the radial heat transfer is governing. Cylindrical samples with 40% pore-filling hydrate saturation were tested. The production tests were carried out over 90 min by dissociating the hydrate from a centered miniature wellbore, by either lowering the pressure to 6, 4, or 6 MPa with simultaneous heating of the wellbore to 288 K. All tests were replicated by a numerical simulation. With additional heating at the same wellbore pressure, the gas production from hydrates could, on average, be increased by 1.8 and 3.6 times in the simulation and experiments, respectively. If the heat influx from the outer boundary is limited, a simulation showed that the specific heat of the formation is rapidly used up when the wellbore is only depressurized and not heated. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of the parameter space of graphene chemical vapor deposition (CVD) on polycrystalline Cu foils is presented, aiming at a more fundamental process rationale in particular regarding the choice of carbon precursor and mitigation of Cu sublimation. CH 4 as precursor requires H 2 dilution and temperatures ≥1000 °C to keep the Cu surface reduced and yield a high-quality, complete monolayer graphene coverage. The H 2 atmosphere etches as-grown graphene; hence, maintaining a balanced CH 4/H 2 ratio is critical. Such balance is more easily achieved at low-pressure conditions, at which however Cu sublimation reaches deleterious levels. In contrast, C 6H 6 as precursor requires no reactive diluent and consistently gives similar graphene quality at 100-150 °C lower temperatures. The lower process temperature and more robust processing conditions allow the problem of Cu sublimation to be effectively addressed. Graphene formation is not inherently self-limited to a monolayer for any of the precursors. Rather, the higher the supplied carbon chemical potential, the higher the likelihood of film inhomogeneity and primary and secondary multilayer graphene nucleation. For the latter, domain boundaries of the inherently polycrystalline CVD graphene offer pathways for a continued carbon supply to the catalyst. Graphene formation is significantly affected by the Cu crystallography; i.e., the evolution of microstructure and texture of the catalyst template form an integral part of the CVD process. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observation of von Kármán type vortices during the impact of water droplets onto a pool of water is reported. Shadowgraph imaging and laser-sheet visualization are used to document these events. The appearance of these vortices occurs within theoretically predicted regions in a Reynolds-splash number parameter space. In addition, and also in agreement with theoretical predictions, smooth splashing, with vortices absent, is found for smaller Reynolds number. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an erbium-doped, nanotube mode-locked fiber oscillator generating 74 fs pulses with 63 nm spectral width. This all-fiber-based laser is a simple, low-cost source for time-resolved optical spectroscopy, as well as for many applications where high resolution driven by short pulse durations is required. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational fluid dynamics (CFD) simulations are becoming increasingly widespread with the advent of more powerful computers and more sophisticated software. The aim of these developments is to facilitate more accurate reactor design and optimization methods compared to traditional lumped-parameter models. However, in order for CFD to be a trusted method, it must be validated using experimental data acquired at sufficiently high spatial resolution. This article validates an in-house CFD code by comparison with flow-field data obtained using magnetic resonance imaging (MRI) for a packed bed with a particle-to-column diameter ratio of 2. Flows characterized by inlet Reynolds numbers, based on particle diameter, of 27, 55, 111, and 216 are considered. The code used employs preconditioning to directly solve for pressure in low-velocity flow regimes. Excellent agreement was found between the MRI and CFD data with relative error between the experimentally determined and numerically predicted flow-fields being in the range of 3-9%. © 2012 American Institute of Chemical Engineers (AIChE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Campylobacter jejuni is a leading cause of human diarrheal illness in the world, and research on it has benefitted greatly by the completion of several genome sequences and the development of molecular biology tools. However, many hurdles remain for a full understanding of this unique bacterial pathogen. One of the most commonly used strains for genetic work with C. jejuni is NCTC11168. While this strain is readily transformable with DNA for genomic recombination, transformation with plasmids is problematic. In this study, we have identified a determinant of this to be cj1051c, predicted to encode a restriction-modification type IIG enzyme. Knockout mutagenesis of this gene resulted in a strain with a 1,000-fold-enhanced transformation efficiency with a plasmid purified from a C. jejuni host. Additionally, this mutation conferred the ability to be transformed by plasmids isolated from an Escherichia coli host. Sequence analysis suggested a high level of variability of the specificity domain between strains and that this gene may be subject to phase variation. We provide evidence that cj1051c is active in NCTC11168 and behaves as expected for a type IIG enzyme. The identification of this determinant provides a greater understanding of the molecular biology of C. jejuni as well as a tool for plasmid work with strain NCTC11168. © 2012, American Society for Microbiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique response of ferroic materials to external excitations facilitates them for diverse technologies, such as nonvolatile memory devices. The primary driving force behind this response is encoded in domain switching. In bulk ferroics, domains switch in a two-step process: nucleation and growth. For ferroelectrics, this can be explained by the Kolmogorov-Avrami-Ishibashi (KAI) model. Nevertheless, it is unclear whether domains remain correlated in finite geometries, as required by the KAI model. Moreover, although ferroelastic domains exist in many ferroelectrics, experimental limitations have hindered the study of their switching mechanisms. This uncertainty limits our understanding of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from reaching their full technological potential. Here we used piezoresponse force microscopy to study the switching mechanisms of ferroelectric-ferroelastic domains in thin polycrystalline Pb 0.7Zr0.3TiO3 films at the nanometer scale. We have found that switched biferroic domains can nucleate at multiple sites with a coherence length that may span several grains, and that nucleators merge to form mesoscale domains, in a manner consistent with that expected from the KAI model. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the topographical and electrical characterisations of 1 nm thick Al2O3 dielectric films on graphene. The Al 2O3 is grown by sputtering a 0.6 nm Al layer on graphene and subsequentially oxidizing it in an O2 atmosphere. The Al 2O3 layer presents no pinholes and is homogeneous enough to act as a tunnel barrier. A resistance-area product in the mega-ohm micrometer-square range is found. Comparatively, the growth of Al 2O3 by evaporation does not lead to well-wetted films on graphene. Application of this high quality sputtered tunnel barrier to efficient spin injection in graphene is discussed. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The forests of carbon nanotubes have been termed as the darkest man-made materials. Such materials exhibit near-perfect optical absorption (reflectance∼0.045%) due to low reflectance and nanoscale surface roughness. We have demonstrated the utilization of these perfectly absorbing forests to produce binary amplitude cylindrical Fresnel lenses. The opaque Fresnel zones are defined by the dark nanotube forests and these lenses display efficient focusing performance at optical wavelengths. Lensing performance was analyzed both computationally and experimentally with good agreement. Such nanostructure based lenses have many potential applications in devices like photovoltaic solar cells. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly sensitive and molecule-specific technique of surface-enhanced Raman spectroscopy (SERS) generates high signal enhancements via localized optical fields on nanoscale metallic materials, which can be tuned by manipulation of the surface roughness and architecture on the submicrometer level. We investigate gold-functionalized vertically aligned carbon nanotube forests (VACNTs) as low-cost straightforward SERS nanoplatforms. We find that their SERS enhancements depend on their diameter and density, which are systematically optimized for their performance. Modeling of the VACNT-based SERS substrates confirms consistent dependence on structural parameters as observed experimentally. The created nanostructures span over large substrate areas, are readily configurable, and yield uniform and reproducible SERS enhancement factors. Further fabricated micropatterned VACNTs platforms are shown to deliver multiplexed SERS detection. The unique properties of CNTs, which can be synergistically utilized in VACNT-based substrates and patterned arrays, can thus provide new generation platforms for SERS detection. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present temperature-dependent modeling of high-temperature superconductors (HTS) to understand HTS electromagnetic phenomena where temperature fluctuation plays a nontrivial role. Thermal physics is introduced into the well-developed H-formulation model, and the effect of temperature-dependent parameters is considered. Based on the model, we perform extensive studies on two important HTS applications: quench propagation and pulse magnetization. A micrometer-scale quench model of HTS coil is developed, which can be used to estimate minimum quench energy and normal zone propagation velocity inside the coil. In addition, we study the influence of inhomogeneity of HTS bulk during pulse magnetization. We demonstrate how the inhomogeneous distribution of critical current inside the bulk results in varying degrees of heat dissipation and uniformity of final trapped field. The temperature- dependent model is proven to be a powerful tool to study the thermally coupled electromagnetic phenomena of HTS. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Fe-catalyzed chemical vapor deposition of carbon nanotubes by complementary in situ grazing-incidence X-ray diffraction, in situ X-ray reflectivity, and environmental transmission electron microscopy. We find that typical oxide supported Fe catalyst films form widely varying mixtures of bcc and fcc phased Fe nanoparticles upon reduction, which we ascribe to variations in minor commonly present carbon contamination levels. Depending on the as-formed phase composition, different growth modes occur upon hydrocarbon exposure: For γ-rich Fe nanoparticle distributions, metallic Fe is the active catalyst phase, implying that carbide formation is not a prerequisite for nanotube growth. For α-rich catalyst mixtures, Fe3C formation more readily occurs and constitutes part of the nanotube growth process. We propose that this behavior can be rationalized in terms of kinetically accessible pathways, which we discuss in the context of the bulk iron-carbon phase diagram with the inclusion of phase equilibrium lines for metastable Fe3C. Our results indicate that kinetic effects dominate the complex catalyst phase evolution during realistic CNT growth recipes. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a synthetic mixture of ZrO2 and Fe 2O3 was prepared by coprecipitation for use in chemical looping and hydrogen production. Cycling experiments in a fluidized bed showed that a material composed of 30 mol % ZrO2 and 70 mol % Fe 2O3 was capable of producing hydrogen with a consistent yield of 90 mol % of the stoichiometric amount over 20 cycles of reduction and oxidation at 1123 K. Here, the iron oxide was subjected to cycles consisting of nearly 100% reduction to Fe followed by reoxidation (with steam or CO 2 and then air) to Fe2O3. There was no contamination by CO of the hydrogen produced, at a lower detection limit of 500 ppm, when the conversion of Fe3O4 to Fe was kept below 90 mol %. A preliminary investigation of the reaction kinetics confirmed that the ZrO2 support does not inhibit rates of reaction compared with those observed with iron oxide alone. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, TiN/La 2O 3/HfSiON/SiO 2/Si gate stacks with thick high-k (HK) and thick pedestal oxide were used. Samples were annealed at different temperatures and times in order to characterize in detail the interaction mechanisms between La and the gate stack layers. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements performed on these samples show a time diffusion saturation of La in the high-k insulator, indicating an La front immobilization due to LaSiO formation at the high-k/interfacial layer. Based on the SIMS data, a technology computer aided design (TCAD) diffusion model including La time diffusion saturation effect was developed. © 2012 American Institute of Physics.