63 resultados para Ariosto, Lodovico, 1474-1533.
Resumo:
in this contribution we discuss a stochastic framework for air traffic conflict resolution. The conflict resolution task is posed as the problem of optimizing an expected value criterion. Optimization is carried out by Monte Carlo Markov Chain (MCMC) simulation. A numerical example illustrates the proposed strategy. Copyright © 2005 IFAC.
Resumo:
in this paper we investigate the moment asymptotic stability for the nonlinear stochastic hybrid delay systems. Sufficient criteria on the stabilization and robust stability are also established for linear stochastic hybrid delay systems. Copyright © 2005 IFAC.
Resumo:
Most academic control schemes for MIMO systems assume all the control variables are updated simultaneously. MPC outperforms other control strategies through its ability to deal with constraints. This requires on-line optimization, hence computational complexity can become an issue when applying MPC to complex systems with fast response times. The multiplexed MPC scheme described in this paper solves the MPC problem for each subsystem sequentially, and updates subsystem controls as soon as the solution is available, thus distributing the control moves over a complete update cycle. The resulting computational speed-up allows faster response to disturbances, and hence improved performance, despite finding sub-optimal solutions to the original problem. The multiplexed MPC scheme is also closer to industrial practice in many cases. This paper presents initial stability results for two variants of multiplexed MPC, and illustrates the performance benefit by an example. Copyright copy; 2005 IFAC. Copyright © 2005 IFAC.
Resumo:
Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes. RFID has long been used to gather a history or trace of part movements, but the use of it as an integral part of the control process is yet to be fully exploited. Such use places stringent demands on the quality of the sensor data and the method used to interpret that data. in particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects with the use of RFID. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes. Copyright © 2005 IFAC.
Resumo:
Our group recently reproduced the water-assisted growth method, so-called "SuperGrowth", of millimeter-thick single-walled carbon nanotube (SWNT) forests by using C2H4/H2/H2O/Ar reactant gas and Fe/Al2O3, catalyst. In this current work, a parametric study was carried out on both reaction and catalyst conditions. Results revealed that a thin Fe catalyst layer (about 0.5 nm) yielded rapid growth of SWNTs only when supported on Al2O3, and that Al2O3 support enhanced the activity of Fe, Co, and Ni catalysts. The growth window for the rapid SWNT growth was narrow, however. Optimum amount of added H2O increased the SWNT growth rate but further addition of H2O degraded both the SWNT growth rate and quality. Addition of H2 was also essential for rapid SWNT growth, but again, further addition decreased both the SWNT growth rate and quality. Because Al2O3 catalyzes hydrocarbon reforming, Al2O3 support possibly enhances the SWNT growth rate by supplying the carbon source to the catalyst nanoparticles. The origin of the narrow window for rapid SWNT growth is also discussed.
Resumo:
The probe tip is pivotal in determining the resolution and nature of features observed in the Scanning Tunnelling Microscope (STM). We have augmented a conventional Pt/Ir metallic tip with a hydrothermally grown ZnO nanowire (NW). Atomic resolution imaging of graphite is attained. Current-voltage (IV) characteristics demonstrate an asymmetry stemming from the unintentional n-type doping of the ZnO NW, whereas the expected Schottky barrier at the ZnO-Pt/Ir interface is shown to have negligible effect. Moreover the photoconductivity of the system is investigated, paving the way towards a photodetector capable of atomic resolution.
Resumo:
Design knowledge can be acquired from various sources and generally requires an integrated representation for its effective and efficient re-use. Though knowledge about products and processes can illustrate the solutions created (know-what) and the courses of actions (know-how) involved in their creation, the reasoning process (know-why) underlying the solutions and actions is still needed for an integrated representation of design knowledge. Design rationale is an effective way of capturing that missing part, since it records the issues addressed, the options considered, and the arguments used when specific design solutions are created and evaluated. Apart from the need for an integrated representation, effective retrieval methods are also of great importance for the re-use of design knowledge, as the knowledge involved in designing complex products can be huge. Developing methods for the retrieval of design rationale is very useful as part of the effective management of design knowledge, for the following reasons. Firstly, design engineers tend to want to consider issues and solutions before looking at solid models or process specifications in detail. Secondly, design rationale is mainly described using text, which often embodies much relevant design knowledge. Last but not least, design rationale is generally captured by identifying elements and their dependencies, i.e. in a structured way which opens the opportunity for going beyond simple keyword-based searching. In this paper, the management of design rationale for the re-use of design knowledge is presented. The retrieval of design rationale records in particular is discussed in detail. As evidenced in the development and evaluation, the methods proposed are useful for the re-use of design knowledge and can be generalised to be used for the retrieval of other kinds of structured design knowledge. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT + normalized eight-point algorithm + RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640 × 480) involving scenes of the built environment.
Resumo:
The commercial far-range (>10 m) spatial data collection methods for acquiring infrastructure’s geometric data are not completely automated because of the necessary manual pre- and/or post-processing work. The required amount of human intervention and, in some cases, the high equipment costs associated with these methods impede their adoption by the majority of infrastructure mapping activities. This paper presents an automated stereo vision-based method, as an alternative and inexpensive solution, to producing a sparse Euclidean 3D point cloud of an infrastructure scene utilizing two video streams captured by a set of two calibrated cameras. In this process SURF features are automatically detected and matched between each pair of stereo video frames. 3D coordinates of the matched feature points are then calculated via triangulation. The detected SURF features in two successive video frames are automatically matched and the RANSAC algorithm is used to discard mismatches. The quaternion motion estimation method is then used along with bundle adjustment optimization to register successive point clouds. The method was tested on a database of infrastructure stereo video streams. The validity and statistical significance of the results were evaluated by comparing the spatial distance of randomly selected feature points with their corresponding tape measurements.
Resumo:
Tracking of project related entities such as construction equipment, materials, and personnel is used to calculate productivity, detect travel path conflicts, enhance the safety on the site, and monitor the project. Radio frequency tracking technologies (Wi-Fi, RFID, UWB) and GPS are commonly used for this purpose. However, on large-scale sites, deploying, maintaining and removing such systems can be costly and time-consuming. In addition, privacy issues with personnel tracking often limits the usability of these technologies on construction sites. This paper presents a vision based tracking framework that holds promise to address these limitations. The framework uses videos from a set of two or more static cameras placed on construction sites. In each camera view, the framework identifies and tracks construction entities providing 2D image coordinates across frames. Combining the 2D coordinates based on the installed camera system (the distance between the cameras and the view angles of them), 3D coordinates are calculated at each frame. The results of each step are presented to illustrate the feasibility of the framework.
Resumo:
Pavement condition assessment is essential when developing road network maintenance programs. In practice, the data collection process is to a large extent automated. However, pavement distress detection (cracks, potholes, etc.) is mostly performed manually, which is labor-intensive and time-consuming. Existing methods either rely on complete 3D surface reconstruction, which comes along with high equipment and computation costs, or make use of acceleration data, which can only provide preliminary and rough condition surveys. In this paper we present a method for automated pothole detection in asphalt pavement images. In the proposed method an image is first segmented into defect and non-defect regions using histogram shape-based thresholding. Based on the geometric properties of a defect region the potential pothole shape is approximated utilizing morphological thinning and elliptic regression. Subsequently, the texture inside a potential defect shape is extracted and compared with the texture of the surrounding non-defect pavement in order to determine if the region of interest represents an actual pothole. This methodology has been implemented in a MATLAB prototype, trained and tested on 120 pavement images. The results show that this method can detect potholes in asphalt pavement images with reasonable accuracy.
Resumo:
Only very few constructed facilities today have a complete record of as-built information. Despite the growing use of Building Information Modelling and the improvement in as-built records, several more years will be required before guidelines that require as-built data modelling will be implemented for the majority of constructed facilities, and this will still not address the stock of existing buildings. A technical solution for scanning buildings and compiling Building Information Models is needed. However, this is a multidisciplinary problem, requiring expertise in scanning, computer vision and videogrammetry, machine learning, and parametric object modelling. This paper outlines the technical approach proposed by a consortium of researchers that has gathered to tackle the ambitious goal of automating as-built modelling as far as possible. The top level framework of the proposed solution is presented, and each process, input and output is explained, along with the steps needed to validate them. Preliminary experiments on the earlier stages (i.e. processes) of the framework proposed are conducted and results are shown; the work toward implementation of the remainder is ongoing.
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. This capability is a product of the technological breakthroughs in the area of image processing that has allowed for the development of a large number of digital imaging applications in all industries. In this paper, an automated and content based construction site image retrieval method is presented. This method is based on image retrieval techniques, and specifically those related with material and object identification and matches known material samples with material clusters within the image content. The results demonstrate the suitability of this method for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.