38 resultados para Anisotropy of magnetic susceptability (AMS)
Resumo:
It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils. © 2012 American Institute of Physics.
Resumo:
In this paper, the use of magnetic materials to divert flux in high-temperature superconductor superconducting coils and reduce transport ac loss is investigated. This particular technique is preferred over other techniques, such as striation, Roebel transposition, and twisted wires because it does not require modification to the conductor itself, which can be detrimental to the properties of the superconductor. The technique can also be implemented for existing coils. The analysis is carried out using a coil model based on the H formulation and implemented in comsol multiphysics. Both weakly and strongly magnetic materials are investigated, and it is shown that the use of such materials can divert flux and achieve a reduction in transport ac loss, which, in some cases, is quite significant. This analysis acts to provide a foundation for further optimization and experimental work in the future. © 2011 IEEE.
Resumo:
A finite element model for a YBCO pancake coil with a magnetic substrate is developed in this paper. An axial symmetrical H formulation and the E-J power law are used to construct the model, with the magnetic substrate considered by introducing an extra time-dependent term in the formula. A pancake coil is made and tested. The measurement of critical current and transport loss is compared to the model result, showing good consistency. The influence of magnetic substrate in the condition of AC and DC current is studied. The AC loss decreases without a magnetic substrate. It is observed that when the applied DC current approaches the critical current the coil turn loss profile changes completely in the presence of magnetic substrate due to the change of magnetic field distribution. © 2012 IOP Publishing Ltd.
Resumo:
A novel technique is proposed to magnetize bulk superconductors, which has the potential to build up strong superconducting magnets. Instead of conventionally using strong magnetic pulses, periodical magnetic waves with strength as low as that of rare-earth magnets are applied. These magnetic waves travel from the periphery to the center of a bulk superconductor and become trapped little by little. In this way, bulk superconductors can gradually be magnetized. To generate these magnetic waves, a thermally actuated magnet was developed, which is constructed by a heating/cooling switch system, a rare-earth bulk magnet, and a Gadolinium (Gd) bulk. The heating/cooling switch system controls the temperature of the Gd bulk, which, along with the rare-earth magnet underneath, can transform thermal signals into magnetic waves. The modeling results of the thermally actuated magnet show that periodical magnetic waves can effectively be generated by applying heating and cooling pulses in turn. A YBCO bulk was tested in liquid nitrogen under the magnetic waves, and a notable accumulation of magnetic flux density was observed. © 2006 IEEE.
Resumo:
Both MgB2 and (RE)BCO bulk materials can provide a highly compact source of magnetic field when magnetized. The properties of these materials when magnetized by a pulsed field are potentially useful for a number of applications, including magnetic levitation. This paper reports on pulsed field magnetization of single 25 mm diameter (RE)BCO bulks using a recently constructed pulse magnetization facility, which allows an automated sequence of pulses to be delivered. The facility allows measurement of force between a magnetized (RE)BCO bulk and a bulk MgB2 hollow cylinder, which is field cooled in the field of the magnetized (RE)BCO bulk. Hysteresis cycling behavior for small displacement is also measured to extract the stiffness value. The levitation forces up to 500 N were obtained, the highest ever measured between two bulks and proves the concept of a bulk-bulk superconducting bearing design. © 2002-2011 IEEE.
Resumo:
In this communication, we report on the anisotropy of the superconducting properties of multifilamentary Bi-based tapes experimentally investigated by AC magnetic susceptibility measurements. The susceptibility $\chi= \chi' - j \chi''$ was measured using a commercial system and a couple of orthogonal pick-up coils. The $\chi''$ vs. temperature curves were shown to exhibit two peaks. The smaller of the peaks, occurring near T = 72K, was only visible for particular field directions and within a given frequency window. Such results point out the role played by the phase difference between the applied magnetic field and the internal magnetic field seen by the filaments.
Resumo:
This paper reports the results of an experimental investigation of the performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO) coated conductors. Since effective screening of the axial DC magnetic field requires the unimpeded flow of an azimuthal persistent current, we demonstrate a configuration of a screening shell made out of standard YBCO coated conductor capable to accomplish that. The screen allows the persistent current to flow in the predominantly azimuthal direction at a temperature of 77 K. The persistent screen, incorporating a single layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes, another type of screen which incorporates low critical temperature quasi-persistent joints was also built. The shielding technique we describe here appears to be especially promising for the realization of large scale high-Tc superconducting screens.
Resumo:
Brushless doubly fed induction generator (BDFIG) has substantial benefits, which make it an attractive alternative as a wind turbine generator. However, it suffers from lower efficiency and larger dimensions in comparison to DFIG. Hence, optimizing the BDFIG structure is necessary for enhancing its situation commercially. In previous studies, a simple model has been used in BDFIG design procedure that is insufficiently accurate. Furthermore, magnetic saturation and iron loss are not considered because of difficulties in determination of flux density distributions. The aim of this paper is to establish an accurate yet computationally fast model suitable for BDFIG design studies. The proposed approach combines three equivalent circuits including electric, magnetic and thermal models. Utilizing electric equivalent circuit makes it possible to apply static form of magnetic equivalent circuit, because the elapsed time to reach steady-state results in the dynamic form is too long for using in population-based design studies. The operating characteristics, which are necessary for evaluating the objective function and constraints values of the optimization problem, can be calculated using the presented approach considering iron loss, saturation, and geometrical details. The simulation results of a D-180 prototype BDFIG are compared with measured data in order to validate the developed model. © 1986-2012 IEEE.