40 resultados para Aluminum Compunds
Resumo:
During high-power continuous wave (cw) Nd:yttritium-aluminum-garnet (YAG) laser welding a vapor plume is formed containing vaporized material ejected from the keyhole. The gas used as a plume control mechanism affects the plume shape but not its temperature, which has been found to be less than 3000 K, independent of the atmosphere and plume control gases. In this study high-power (up to 8 kW) cw Nd:YAG laser welding has been performed under He, Ar, and N2 gas atmospheres, extending the power range previously studied. The plume was found to contain very small evaporated particles of diameter less than 50 nm. Rayleigh and Mie scattering theories were used to calculate the attenuation coefficient of the incident laser power by these small particles. In addition the attenuation of a 9 W Nd:YAG probe laser beam, horizontally incident across the plume generated by the high-power Nd:YAG laser, was measured at various positions with respect to the beam-material interaction point. Up to 40% attenuation of the probe laser power was measured at positions corresponding to zones of high concentration of vapor plume, shown by high-speed video measurements. These zones interact with the high-power Nd:YAG laser beam path and, can result in significant laser power attenuation. © 2004 Laser Institute of America.
Resumo:
Aluminum nitride (AlN) piezoelectric thin films with c-axis crystal orientation on polymer substrates can potentially be used for development of flexible electronics and lab-on-chip systems. In this study, we investigated the effects of deposition parameters on the crystal structure of AlN thin films on polymer substrates deposited by reactive direct-current magnetron sputtering. The results show that low sputtering pressure as well as optimized N 2/Ar flow ratio and sputtering power is beneficial for AlN (002) orientation and can produce a highly (002) oriented columnar structure on polymer substrates. High sputtering power and low N 2/Ar flow ratio increase the deposition rate. In addition, the thickness of Al underlayer also has a strong influence on the film crystallography. The optimal deposition parameters in our experiments are: deposition pressure 0.38 Pa, N 2/Ar flow ratio 2:3, sputtering power 414 W, and thickness of Al underlayer less than 100 nm. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Reusing steel and aluminum components would reduce the need for new production, possibly creating significant savings in carbon emissions. Currently, there is no clearly defined set of strategies or barriers to enable assessment of appropriate component reuse; neither is it possible to predict future levels of reuse. This work presents a global assessment of the potential for reusing steel and aluminum components. A combination of top-down and bottom-up analyses is used to allocate the final destinations of current global steel and aluminum production to product types. A substantial catalogue has been compiled for these products characterizing key features of steel and aluminum components including design specifications, requirements in use, and current reuse patterns. To estimate the fraction of end-of-life metal components that could be reused for each product, the catalogue formed the basis of a set of semistructured interviews with industrial experts. The results suggest that approximately 30% of steel and aluminum used in current products could be reused. Barriers against reuse are examined, prompting recommendations for redesign that would facilitate future reuse.
Resumo:
Demand for aluminum in final products has increased 30-fold since 1950 to 45 million tonnes per year, with forecasts predicting this exceptional growth to continue so that demand will reach 2-3 times today's levels by 2050. Aluminum production uses 3.5% of global electricity and causes 1% of global CO2 emissions, while meeting a 50% cut in emissions by 2050 against growing demand would require at least a 75% reduction in CO2 emissions per tonne of aluminum produced--a challenging prospect. In this paper we trace the global flows of aluminum from liquid metal to final products, revealing for the first time a complete map of the aluminum system and providing a basis for future study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also draws attention to two key issues. First, around half of all liquid aluminum (~39 Mt) produced each year never reaches a final product, and a detailed discussion of these high yield losses shows significant opportunities for improvement. Second, aluminum recycling, which avoids the high energy costs and emissions of electrolysis, requires signification "dilution" (~ 8 Mt) and "cascade" (~ 6 Mt) flows of higher aluminum grades to make up for the shortfall in scrap supply and to obtain the desired alloy mix, increasing the energy required for recycling.
Resumo:
Polymer composites comprising ultra-high molecular weight polyethylene (UHWMPE) fibers in a compliant matrix are now widely used in ballistic applications with varying levels of success. This is primarily due to a poor understanding of the mechanics of penetration of these composites in ballistic protection systems. In this study, we report experimental observations of the penetration mechanisms in four model systems impacted by a 12.7 mm diameter spherical steel projectile. The four model targets designed to highlight different penetration mechanisms in Dyneema® UHWMPE composites were: (i) a bare aluminum plate; (ii) the same plate fully encased in a 5.9 mm thick casing of Dyneema®; (iii) the fully encased plate with a portion of the Dyneema® removed from the front face so that the projectile impacts directly the Al plate; and (iv) the fully encased plate with a portion of the Dyneema® removed from the rear face so that the projectile can exit the Al plate without again interacting with the Dyneema®. A combination of synchronized high speed photography with three cameras, together with post-test examination of the targets via X-ray tomography and optical microscopy was used to elucidate the deformation and perforation mechanisms. The measurements show that the ballistic resistance of these targets increases in the order: bare Al plate, rear face cutout target, fully encased target and front face cutout target. These findings are explained based on the following key findings: (a) the ballistic performance of Dyneema® plates supported on a foundation is inferior to Dyneema® plates supported along their edges; (b) the apparent ballistic resistance of Dyneema® plates increases if the plates are given an initial velocity prior to the impact by the projectile, thereby reducing the relative velocity between the Dyneema® plate and projectile; and (c) when the projectile is fragmented prior to impact, the spatially and temporally distributed loading enhances the ballistic resistance of the Dyneema®. The simple model targets designed here have elucidated mechanisms by which Dyneema® functions in multi-material structures. © 2014 Elsevier Ltd.
Resumo:
Plastic collapse modes of sandwich beams have been investigated experimentally and theoretically for the case of an aluminum alloy foam with cold-worked aluminum face sheets. Plastic collapse is by three competing mechanisms: face yield, indentation and core shear, with the active mechanism depending upon the choice of geometry and material properties. The collapse loads, as predicted by simple upper bound solutions for a rigid, ideally plastic beam, and by more refined finite element calculations are generally in good agreement with the measured strengths. However, a thickness effect of the foam core on the collapse strength is observed for collapse by core shear: the shear strength of the core increases with diminishing core thickness in relation to the cell size. Limit load solutions are used to construct collapse maps, with the beam geometrical parameters as axes. Upon displaying the collapse load for each collapse mechanism, the regimes of dominance of each mechanism and the associate mass of the beam are determined. The map is then used in optimal design by minimizing the beam weight for a given structural load index.
Resumo:
A finite element study has been performed on the effects of holes and rigid inclusions on the elastic modulus and yield strength of regular honeycombs under biaxial loading. The focus is on honeycombs that have already been weakened by a small degree of geometrical imperfection, such as a random distribution of fractured cell walls, as these imperfect honeycombs resemble commercially available metallic foams. Hashin-Shtrikman lower and upper bounds and self-consistent estimates of elastic moduli are derived to provide reference solutions to the finite element calculations. It is found that the strength of an imperfect honeycomb is relatively insensitive to the presence of holes and inclusions, consistent with recent experimental observations on commercial aluminum alloy foams.
Resumo:
This paper presents experimental results on heat transfer and pressure drop for a compact heat sink made of fully triangulated, lightweight (porosity∼0.938), aluminum lattice-frame materials (LFMs). Due to the inherent structural anisotropy of the LFMs, two mutually perpendicular orientations were selected for the measurements. Constant heat flux was applied to the heat sink under steady state conditions, and dissipated by forced air convection. The experimental data were compared with those predicted from an analytical model based on fin analogy. The experimental results revealed that pressure drop is strongly dependent upon the orientation of the structure, due mainly to the flow blockage effect. For heat transfer measurements, typical local temperature distributions on the substrate under constant heat flux conditions were captured with infrared camera. The thermal behavior of LFMs was found to follow closely that of cylinder banks, with early transition Reynolds number (based on strut diameter) equal to about 300. The Nusselt number prediction from the fin-analogy correlates well with experimental measurements, except at low Reynolds numbers where a slightly underestimation is observed. Comparisons with empty channels and commonly used heat exchanger media show that the present LFM heat sink can remove heat approximately seven times more efficient than an empty channel and as efficient as a bank of cylinders at the same porosity level. The aluminum LFMs are extremely stiff and strong, making them ideal candidates for multifunctional structures requiring both heat dissipation and mechanical load carrying capabilities. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this study, a micro-pump unit based on surface acoustic wave (SAW) on piezoelectric ZnO film is designed and fabricated as a micro-fluidic device. It employs a mechanical wave, which is generated electrically using an aluminum interdigital transducer (IDT), and propagates on the surface of the ZnO film. The ZnO film was used in this study because it has a high electromechanical coefficient and an excellent bonding with various substrate materials, in particular silicon. The sputtering parameters for ZnO film deposition have been optimized, and the ZnO films with different thickness from 1 micron to 5.5 microns were prepared. The film properties have been characterized using different methods, such as scanning electron microscopy, X-ray diffraction and atomic force microscopy. Aluminum IDT with a finger width and spacing of 8 microns was patterned on the ZnO film using a lift-off process. The frequency generated was measured using a network analyzer, and it varies from 130 MHz to 180 MHz as a function of film thickness. A signal generator was used to generate the frequency with a power amplifier to amplify the signal, which was then applied to aluminum IDT to generate the surface acoustic wave. If a liquid droplet exists on the surface carrying the acoustic wave, the energy and the momentum of the SAW will be coupled into the fluid, causing the liquid to vibrate and move on film surface. The strength of this movement is determined by the applied voltage and frequency. The volume of the liquid drop loaded on the SAW device in this study is of several hundreds of nanoliters. The movement of the liquid inside the droplet and also on the ZnO film surface can be demonstrated. The performance of ZnO SAW device was characterized as a function of film thickness. © 2007 IOP Publishing Ltd.