177 resultados para Aligned ZnO Nanorods


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a micro-pump unit based on surface acoustic wave (SAW) on piezoelectric ZnO film is designed and fabricated as a micro-fluidic device. It employs a mechanical wave, which is generated electrically using an aluminum interdigital transducer (IDT), and propagates on the surface of the ZnO film. The ZnO film was used in this study because it has a high electromechanical coefficient and an excellent bonding with various substrate materials, in particular silicon. The sputtering parameters for ZnO film deposition have been optimized, and the ZnO films with different thickness from 1 micron to 5.5 microns were prepared. The film properties have been characterized using different methods, such as scanning electron microscopy, X-ray diffraction and atomic force microscopy. Aluminum IDT with a finger width and spacing of 8 microns was patterned on the ZnO film using a lift-off process. The frequency generated was measured using a network analyzer, and it varies from 130 MHz to 180 MHz as a function of film thickness. A signal generator was used to generate the frequency with a power amplifier to amplify the signal, which was then applied to aluminum IDT to generate the surface acoustic wave. If a liquid droplet exists on the surface carrying the acoustic wave, the energy and the momentum of the SAW will be coupled into the fluid, causing the liquid to vibrate and move on film surface. The strength of this movement is determined by the applied voltage and frequency. The volume of the liquid drop loaded on the SAW device in this study is of several hundreds of nanoliters. The movement of the liquid inside the droplet and also on the ZnO film surface can be demonstrated. The performance of ZnO SAW device was characterized as a function of film thickness. © 2007 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we demonstrate how secondary ion mass spectrometry (SIMS) can be applied to ZnO nanowire structures for gold catalyst residue determination. Gold plays a significant role in determining the structural properties of such nanowires, with the location of the gold after growth being a strong indicator of the growth mechanism. For the material investigated here, we find that the gold remains at the substrate-nanowire interface. This was not anticipated as the usual growth mechanism associated with catalyst growth is of a vapour-liquid-solid (VLS) type. The results presented here favour a vapour-solid (VS) growth mechanism instead. Copyright © 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SAW devices were fabricated on c-axis oriented ZnO films grown on Si substrates. Effects of film thickness on the film microstructure and acoustic frequencies were studied. Both Rayleigh and Sezawa mode waves were detected on the devices, and their resonant frequencies were found to decrease with increase in film thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the current state of the polymer-carbon nanotube composites field. The article first covers key points in dispersion and stabilization of nanotubes in a polymer matrix, with particular attention paid to ultrasonic cavitation and shear mixing. We then focus on the emerging trends in nanocomposite actuators, in particular, photo-stimulated mechanical response. The magnitude and even the direction of this actuation critically depend on the degree of tube alignment in the matrix; in this context, we discuss the affine model predicting the upper bound of orientational order of nanotubes, induced by an imposed strain. We review how photo-actuation in nanocomposites depend on nanotube concentration, alignment and entanglement, and examine possible mechanisms that could lead to this effect. Finally, we discuss properties of pure carbon nanotube networks, in form of mats or fibers. These systems have no polymer matrix, yet demonstrate pronounced viscoelasticity and also the same photomechanical actuation as seen in polymer-based composites. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SAW devices were fabricated on c-axis oriented ZnO films grown on Si substrates. Effects of film thickness on the film microstructure and acoustic frequencies were studied. Both Rayleigh and Sezawa mode waves were detected on the devices, and their resonant frequencies were found to decrease with increase in film thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novelty of this study resides in the fabrication of a bio-sensing device, based on the surface acoustic wave (SAW) on a nanocrystalline ZnO film. The ZnO film was deposited using an rf magnetron sputtering at room temperature on silicon. The deposited films showed the c-axisoriented crystallite with grain size of ∼40 nm. The immunosensing device was fabricated using photolithographic protocols on the film. As a model biomolecular recognition and immunosensing, biospecific interaction between a 6-(2,4-dinitrophenyl) aminohexanoic acid (DNP) antigen and its antibody was employed, demonstrating the shifts of resonant frequencies on SAW immunosensing device. The device exhibited a linearity as a function of the antibody concentration in the range of 20∼20,000 ng/ml. © 2009 American Scientific Publishers. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the nanofabrication study of self-aligned electrodes on suspended multiwalled carbon nanotube structures. When metal is deposited on a suspended multiwalled carbon nanotube structure, the nanotube acts as an evaporation mask, resulting in the formation of discontinuous electrodes. The metal deposits on the nanotubes are removed with lift-off. Using Al sacrificial layers, it was possible to fabricate self-aligned contact electrodes and control electrodes nanometers from the suspended carbon nanotubes with a single lithography step. It was also shown that the fabrication technique may also be used to form nano-gapped contact electrodes. The technique should prove useful for the fabrication of nano-electromechanical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a study into electrode fabrication for the gate control of carbon nanotubes partially suspended above an oxidised silicon substrate. A fabrication technique has been developed that allows self-aligned side-gate electrodes to be placed with respect to an individual nanotube with a spacing of less than 10 nm. The suspended multi-walled carbon nanotube (MWCNT) is used as an evaporation mask during metal deposition. The metal forms an island on the nanotube, with increasing width as the metal is deposited, forming a wedge shape, so that even thick deposited layers yield islands that remain separated from the metal deposited on the substrate due to shadowing of the evaporation. The island can be removed during lift-off to leave a set of self-aligned electrodes on the substrate. Results show that Cr yields self-aligned side gates with around 90% effectiveness. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated self-aligned, side-gated suspended multi-walled carbon nanotubes (MWCNTs), with nanotube-to-gate spacing of less than 10 nm. Evaporated metal forms an island on a suspended MWCNT, the island and the nanotube act as a mask shielding the substrate, and lift-off then removes the metal island, leaving a set of self-aligned side gates. Al, Cr, Au, and Ti were investigated and the best results were obtained with Cr, at a yield of over 90%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the fabrication of self-aligned split gate electrodes on suspended multiwalled carbon nanotube structures. A suspended multiwalled carbon nanotube structure was used as an evaporation mask for the deposition of metal electrodes resulting in the formation of discontinuous wire deposition. The metal deposits on the nanotubes are removed with lift-off due to the poor adhesion of metal to the nanotube surface. Using Al sacrificial layers, it was possible to fabricate self-aligned contact electrodes and control electrodes nanometers from the suspended carbon nanotubes with a single lithography step. It was also shown that the fabrication technique may also be used to form nano-gaped contact electrodes. The technique should prove useful for the fabrication of nano-electromechanical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the fabrication of self-aligned split gate electrodes on suspended multiwalled carbon nanotube structures. A suspended multiwalled carbon nanotube structure was used as an evaporation mask for the deposition of metal electrodes resulting in the formation of discontinuous wire deposition. The metal deposits on the nanotubes are removed with lift-off due to the poor adhesion of metal to the nanotube surface. Using Al sacrificial layers, it was possible to fabricate self-aligned contact electrodes and control electrodes nanometers from the suspended carbon nanotubes with a single lithography step. It was also shown that the fabrication technique may also be used to form nano-gaped contact electrodes. The technique should prove useful for the fabrication of nano-electromechanical systems. © 2003 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the production of integrated-gate nanocathodes which have a single carbon nanotube or silicon nanowire/whisker per gate aperture. The fabrication is based on a technologically scalable, self-alignment process in which a single lithographic step is used to define the gate, insulator, and emitter. The nanotube-based gated nanocathode array has a low turn-on voltage of 25 V and a peak current of 5 μA at 46 V, with a gate current of 10 nA (i.e., 99% transparency). These low operating voltage cathodes are potentially useful as electron sources for field emission displays or miniaturizing electron-based instrumentation.