42 resultados para Airflow resistivity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural, magnetic and electrical transport properties of the Sn-doped TbMnO3 manganites are studied by X-ray diffraction, ac susceptibility, dc magnetization and electrical resistivity measurements. The Sn doping into the Tb and Mn sites of TbMnO3 compresses the unit cell and changes parameters of the antiferromagnetic phase whereas the magnetic moment of Mn are only weakly affected. The electrical resistivity of doped manganites is reduced and the activation energy EA is determined for the thermally activated conduction. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Besides the Kondo effect observed in dilute magnetic alloys, the Cr-doped perovskite manganate compounds La0.7 Ca0.3 Mn1-x Crx O3 also exhibit Kondo effect and spin-glass freezing in a certain composition range. An extensive investigation for the La0.7 Ca0.3 Mn1-x Crx O3 (x=0.01, 0.05, 0.10, 0.3, 0.6, and 1.0) system on the magnetization and ac susceptibility, the resistivity and magnetoresistance, as well as the thermal conductivity is done at low temperature. The spin-glass behavior has been confirmed for these compounds with x=0.05, 0.1, and 0.3. For temperatures above Tf (the spin-glass freezing temperature) a Curie-Weiss law is obeyed. The paramagnetic Curie temperature θ is dependent on Cr doping. Below Tf there exists a Kondo minimum in the resistivity. Colossal magnetoresistance has been observed in this system with Cr concentration up to x=0.6. We suppose that the substitution of Mn with Cr dilutes Mn ions and changes the long-range ferromagnetic order of La0.7 Ca0.3 MnO3. These behaviors demonstrate that short-range ferromagnetic correlation and fluctuation exist among Mn spins far above Tf. Furthermore, these interactions are a precursor of the cooperative freezing at Tf. The "double bumps" feature in the resistivity-temperature curve is observed in compounds with x=0.05 and 0.1. The phonon scattering is enhanced at low temperatures, where the second peak of double bumps comes out. The results indicate that the spin-cluster effect and lattice deformation induce Kondo effect, spin-glass freezing, and strong phonon scattering in mixed perovskite La0.7 Ca0.3 Mn1-x Crx O3. © 2005 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic, electrical and thermal transport properties of the perovskite La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 have been investigated by measuring dc magnetization, ac susceptibility, the magnetoresistance and thermal conductivity in the temperature range of 5-300K. The spin glass behaviour with a spin freezing temperature of 70 K has been well confirmed for this compound, which demonstrates the coexistence and competition between ferromagnetic and antiferromagnetic clusters by the introduction of Cr. Colossal magnetoresistance has been observed over the temperature range investigated. The introduction of Cr causes the "double-bump" feature in electrical resistivity ρ(T). Anomalies on the susceptibility and the thermal conductivity associated with the double-bumps in ρ(T) are observed simultaneously. The imaginary part of ac susceptibility shows a sharp peak at the temperature of insulating-metallic transition where the first resistivity bump was observed, but it is a deep-set valley near the temperature where the second bump in ρ(T) emerges. The thermal conductivity shows an increase below the temperature of the insulating-metallic transition, but the phonon scattering is enhanced accompanying the appearance of the second peak of double-bumps in ρ(T). We relate those observed in magnetic and transport properties of La 0.7Ca 0.3Mn 0.9Cr 0.1O 3 to the spin-dependent scattering. The results reveal that the spin-phonon interaction may be of more significance than the electron (charge)-phonon interaction in the mixed perovskite system. © 2005 Chinese Physical Society and IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we report about the electrical properties of La 0.7Ca0.3MnO3 compounds substituted by copper on the manganese site and/or deliberately contaminated by SiO2 in the reactant mixture. Several phenomena have been observed and discussed. SiO2 addition leads to the formation of an apatite-like secondary phase that affects the electrical conduction through the percolation of the charge carriers. On the other hand, depending on the relative amounts of copper and silicon, the temperature dependence of the electrical resistivity can be noticeably modified: our results enable us to compare the effects of crystallographic vacancies on the A and B sites of the perovskite with the influence of the copper ions substituted on the manganese site. The most original result occurs for the compounds with a small ratio Si/Cu, which display double-peaked resistivity vs. temperature curves. © 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precise magnetotransport studies of heat and charge carriers in polycrystalline MgB2 show that magnetic fields up to 8 T remarkably influence electrical resistivity, thermoelectric power and thermal conductivity. The superconducting transition temperature shifts from 39 K to 19 K at 8 T as observed on electric signals. The temperature transition width is weakly broadened. Electron and phonon contributions to the thermal conductivity are separated and discussed. The Debye temperature calculated from a phonon drag thermoelectric power component is inconsistent with values derived through other effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magneto-transport properties of Bi1.5Pb0.4Nb0.1Sr2Ca2Cu 3O10-x polycrystalline, superconducting ceramic are reported. The material was found to be chemically homogeneous and partially textured. The mixed state properties were investigated by measuring the electrical resistivity, longitudinal and transverse (Nernst effect) thermoelectric power, and thermal conductivity. The magnetization and AC susceptibility measurements were also performed. The variation of these characteristics for magnetic fields up to 5 T are discussed and compared to those of the zero field case. The transport entropy and thermal Hall angle are extracted and quantitatively compared to previously reported data of closely related systems. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hafnium oxide (HfOx) is a high dielectric constant (k) oxide which has been identified as being suitable for use as the gate dielectric in thin film transistors (TFTs). Amorphous materials are preferred for a gate dielectric, but it has been an ongoing challenge to produce amorphous HfOx while maintaining a high dielectric constant. A technique called high target utilization sputtering (HiTUS) is demonstrated to be capable of depositing high-k amorphous HfOx thin films at room temperature. The plasma is generated in a remote chamber, allowing higher rate deposition of films with minimal ion damage. Compared to a conventional sputtering system, the HiTUS technique allows finer control of the thin film microstructure. Using a conventional reactive rf magnetron sputtering technique, monoclinic nanocrystalline HfOx thin films have been deposited at a rate of ∼1.6nmmin-1 at room temperature, with a resistivity of 1013Ωcm, a breakdown strength of 3.5MVcm-1 and a dielectric constant of ∼18.2. By comparison, using the HiTUS process, amorphous HfOx (x=2.1) thin films which appear to have a cubic-like short-range order have been deposited at a high deposition rate of ∼25nmmin-1 with a high resistivity of 1014Ωcm, a breakdown strength of 3MVcm-1 and a high dielectric constant of ∼30. Two key conditions must be satisfied in the HiTUS system for high-k HfOx to be produced. Firstly, the correct oxygen flow rate is required for a given sputtering rate from the metallic target. Secondly, there must be an absence of energetic oxygen ion bombardment to maintain an amorphous microstructure and a high flux of medium energy species emitted from the metallic sputtering target to induce a cubic-like short range order. This HfOx is very attractive as a dielectric material for large-area electronic applications on flexible substrates. A remote plasma sputtering process (high target utilization sputtering, HiTUS) has been used to deposit amorphous hafnium oxide with a very high dielectric constant (∼30). X-ray diffraction shows that this material has a microstructure in which the atoms have a cubic-like short-range order, whereas radio frequency (rf) magnetron sputtering produced a monoclinic polycrystalline microstructure. This is correlated to the difference in the energetics of remote plasma and rf magnetron sputtering processes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near-field measurements were performed at X-band frequencies for graphene on copper microstrip transmission lines. An improvement in radiation of 0.88 dB at 10.2 GHz is exhibited from the monolayer graphene antenna which has dc sheet resistivity of 985 Ω/sq. Emission characteristics were validated via ab initio simulations and compared to empirical findings of geometrically comparable copper patches. This study contributes to the current knowledge of the electronic properties of graphene. © 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A solution processed aluminum-doped zinc oxide (AZO)/multi-walled carbon nanotube (MWCNT) nanocomposite thin film has been developed offering simultaneously high optical transparency and low electrical resistivity, with a conductivity figure of merit (σDC/σopt) of ~75-better than PEDOT:PSS and many graphene derivatives. The reduction in sheet resistance of thin films of pristine MWCNTs is attributed to an increase in the conduction pathways within the sol-gel derived AZO matrix and reduced inter-MWCNT contact resistance. Films have been extensively characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffractometry (XRD), photoluminescence (PL), and ultraviolet-visible (UV-vis) spectroscopy. © 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metallic silicides have been used as contact materials on source/drain and gate in metal-oxide semiconductor (MOS) structure for 40 years. Since the 65 nm technology node, NiSi is the preferred material for contact in microelectronic due to low resistivity, low thermal budget, and low Si consumption. Ni(Pt)Si with 10 at.% Pt is currently employed in recent technologies since Pt allows to stabilize NiSi at high temperature. The presence of Pt and the very low thickness (<10 nm) needed for the device contacts bring new concerns for actual devices. In this work, in situ techniques [X-ray diffraction (XRD), X-ray reflectivity (XRR), sheet resistance, differential scanning calorimetry (DSC)] were combined with atom probe tomography (APT) to study the formation mechanisms as well as the redistribution of dopants and alloy elements (Pt, Pd.) during the silicide formation. Phenomena like nucleation, lateral growth, interfacial reaction, diffusion, precipitation, and transient phase formation are investigated. The effect of alloy elements (Pt, Pd.) and dopants (As, B.) as well as stress and defects induced by the confinement in devices on the silicide formation mechanism and alloying element redistribution is examined. In particular APT has been performed for the three-dimensional (3D) analysis of MOSFET at the atomic scale. The advances in the understanding of the mechanisms of formation and redistribution are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of transparent radio-frequency electronics has been limited, until recently, by the lack of suitable materials. Naturally thin and transparent graphene may lead to disruptive innovations in such applications. Here, we realize optically transparent broadband absorbers operating in the millimetre wave regime achieved by stacking graphene bearing quartz substrates on a ground plate. Broadband absorption is a result of mutually coupled Fabry-Perot resonators represented by each graphene-quartz substrate. An analytical model has been developed to predict the absorption performance and the angular dependence of the absorber. Using a repeated transfer-and-etch process, multilayer graphene was processed to control its surface resistivity. Millimetre wave reflectometer measurements of the stacked graphene-quartz absorbers demonstrated excellent broadband absorption of 90% with a 28% fractional bandwidth from 125-165 GHz. Our data suggests that the absorbers' operation can also be extended to microwave and low-terahertz bands with negligible loss in performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the performance of a typical hole transport layer for organic photovoltaics (OPVs), Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin film with a series of PEDOT:PSS layers doped with silver (Ag) nanoparticles (NPs) of various size distributions. These hybrid layers have attracted great attention as buffer layers in plasmonic OPVs, although there is no report up to date on their isolated performance. In the present study we prepared a series of PEDOT:PSS layers sandwiched between indium tin oxide (ITO) and gold (Au) electrodes. Ag NPs were deposited on top of the ITO by electron beam evaporation followed by spin coating of PEDOT:PSS. Electrical characterization performed in the dark showed linear resistive behavior for all the samples; lower resistance was observed for the hybrid ones. It was found that the resistivity of the samples decreases with increasing the particle's size. A substantial increase of the electric field between the ITO and the Au electrodes was seen through the formation of current paths through the Ag NPs. A striking observation is the slight increase in the slope of the current density versus voltage curves when measured under illumination for the case of the plasmonic layers, indicating that changes in the electric field in the vicinity of the NP due to plasmonic excitation is a non-vanishing factor. © 2014 Published by Elsevier B.V. All rights reserved.