212 resultados para Aircraft gas-turbines.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unstable combustion that can occur in combustion chambers is a major problem for aeroengines and ground-based industrial gas turbines. Nowadays, CFD provides a flexible, low cost tool to supplement direct measurement. This paper presents simulations of combustion oscillations in a liquid-fuelled experimental rig at the University of Cambridge. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone and to develop inlet and outlet boundary conditions just upstream and downstream of the combustion region enabling the CFD calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in good agreement with experimental measurements. More details about the unstable combustion can be obtained from the simulation results. The approach developed here is expected to provide a powerful tool for the design and operation of stable combustion systems. Copyright © 2009 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A description is presented of a time-marking calculation of the unsteady flow generated by the interaction of upstream wakes with a moving blade row. The inviscid equations of motion are solved using a finite volume technique. Wake dissipation is modeled using an artificial viscosity. Predictions are presented for the rotor mid-span section of an axial turbine. Reasonable agreement is found between the predicted and measured unsteady blade surface static pressures and velocities. These and other results confirm that simple theories can be used to explain the phenomena of rotor-stator wake interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with particle deposition onto solid walls from turbulent flows. The aim of the study is to model particle deposition in industrial flows, such as the one in gas turbines. The numerical study has been carried out with a two fluid approach. The possible contribution to the deposition from Brownian diffusion, turbulent diffusion and shear-induced lift force are considered in the study. Three types of turbulent two-phase flows have been studied: turbulent channel flow, turbulent flow in a bent duct and turbulent flow in a turbine blade cascade. In the turbulent channel flow case, the numerical results from a two-dimensional code show good agreement with numerical and experimental results from other resources. Deposition problem in a bent duct flow is introduced to study the effect of curvature. Finally, the deposition of small particles on a cascade of turbine blades is simulated. The results show that the current two fluid models are capable of predicting particle deposition rates in complex industrial flows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A type of adaptive, closed-loop controllers known as self-tuning regulators present a robust method of eliminating thermoacoustic oscillations in modern gas turbines. These controllers are able to adapt to changes in operating conditions, and require very little pre-characterisation of the system. One piece of information that is required, however, is the sign of the system's high frequency gain (or its 'instantaneous gain'). This poses a problem: combustion systems are infinite-dimensional, and so this information is never known a priori. A possible solution is to use a Nussbaum gain, which guarantees closed-loop stability without knowledge of the sign of the high frequency gain. Despite the theory for such a controller having been developed in the 1980s, it has never, to the authors' knowledge, been demonstrated experimentally. In this paper, a Nussbaum gain is used to stabilise thermoacoustic instability in a Rijke tube. The sign of the high frequency gain of the system is not required, and the controller is robust to large changes in operating conditions - demonstrated by varying the length of the Rijke tube with time. Copyright © 2008 by Simon J. Illingworth & Aimee S. Morgans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lean premixed prevaporized (LPP) technology has been widely used in the new generation of gas turbines in which reduced emissions are a priority. However, such combustion systems are susceptible to the damage of self-excited oscillations. Feedback control provide a way of preventing such dynamic stabilities. A flame dynamics assumption is proposed for a recently developed unsteady heat release model, the robust design technique, ℋ ∞ loop-shaping, is applied for the controller design and the performance of the controller is confirmed by simulations of the closed-loop system. The Integral Quadratic Constraints(IQC) method is employed to prove the stability of the closed-loop system. ©2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combustion oscillations in gas turbines can result in serious damage. One method used to predict such oscillations is to analyze the combustor acoustics using a simple linear model. Such a model requires a flame transfer function to describe the response of the heat release to flow perturbations inside the combustor. This paper reports on the application of Planar Laser Induced Fluorescence (PLIF) of OH radicals to analyze the response of a lean premixed flame to oncoming flow perturbations. Both self-excited oscillations and low amplitude forced oscillations at various frequencies are investigated in an atmospheric pressure model combustor rig. In order to visualize fluctuations of local fuel distribution, acetone-PLIF was also applied in non-reacting and acoustically forced flows at oscillation frequencies of 200 Hz and 510 Hz, respectively. OH-PLIF images were acquired over a range of operating parameters. The results presented in this paper originate from data sets acquired at fixed phase angles during the oscillation cycle. Comparative experiments in self excited and forced acoustic oscillations show that the flame and the combustion intensity develop similarly throughout the pressure cycle in both cases. Although the peak fluorescence intensities differ between self excited and the forced instabilities, there is a clear correspondence in the observed frequency and phase information from the two cases. This result encourages a comparison of the OH-PLIF and the acetone-PLIF results. Quantitative measurements of the equivalence ratio in specific areas of the measurement plane offer insight on the complex phenomena coupling acoustic perturbations, i.e. flow velocity fluctuations, to fluctuations in fuel distribution and combustion intensity, ultimately resulting in self excited combustion oscillations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The potential of palm methyl esters (PME) as an alternative fuel for gas turbines is investigated using a swirl burner. The main air flow is preheated to 623 K, and a swirling spray flame is established at atmospheric pressure. The spray combustion characteristics of PME are compared to diesel and Jet-A1 fuel under the same burner power output of 6 kW. Investigation of the fuel atomizing characteristics using phase Doppler anemometry (PDA) shows that most droplets are distributed within the flame reaction zone region. PME droplets exhibit higher Sautermean diameter (SMD) values than baseline fuels, and thus higher droplet penetration length and longer evaporation timescales. The PME swirl flame presents a different visible flame reaction zone while combusting with low luminosity and produces no soot. NO x emissions per unit mass of fuel and per unit energy are reduced by using PME relative to those of conventional fuels. © 2012 Copyright Taylor and Francis Group, LLC.