35 resultados para 307-U1317A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the detection of knock using the sparking plug, and a system which allows the basic nature of the signal from the spark plug to be compared directly with that from an accelerometer are described. Results are presented for a range of engine speeds which highlight the problems and benefits of each sensing technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate predictions of ground-borne vibration levels in the vicinity of an underground railway are greatly sought in modern urban centers. Yet the complexity involved in simulating the underground environment means that it is necessary to make simplifying assumptions about this environment. One such commonly-made assumption is to model the railway as a single tunnel, despite many underground railway lines consisting of twin-bored tunnels. A unique model for two tunnels embedded in a homogeneous, elastic full space is developed. The vibration response of this two-tunnel system is calculated using the superposition of two displacement fields: one resulting from the forces acting on the invert of a single tunnel, and the other resulting from the interaction between the tunnels. By partitioning of the stresses into symmetric and anti-symmetric mode number components using Fourier decomposition, these two displacement fields can by calculated with minimal computational requirements. The significance of the interactions between twin-tunnels is quantified by calculating the insertion gains that result from the existence of a second tunnel. The insertion-gain results are shown to be localized and highly dependent on frequency, tunnel orientation and tunnel thickness. At some locations, the magnitude of these insertion gains is greater than 20dB. This demonstrates that a high degree of inaccuracy exists in any surface vibration-prediction model that includes only one of the two tunnels. © 2012 Springer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Super-Resolution imaging techniques such as Fluorescent Photo-Activation Localisation Microscopy (FPALM) have created a powerful new toolkit for investigating living cells, however a simple platform for growing, trapping, holding and controlling the cells is needed before the approach can become truly widespread. We present a microfluidic device formed in polydimethylsiloxane (PDMS) with a fluidic design which traps cells in a high-density array of wells and holds them very still throughout the life cycle, using hydrodynamic forces only. The device meets or exceeds all the necessary criteria for FPALM imaging of Schizosaccharomyces pombe and is designed to remain flexible, robust and easy to use. © 2011 IEEE.