32 resultados para 304
Resumo:
The low speed impact responses of simply-supported and clamped sandwich beams with corrugated and Y-frame cores have been measured in a drop-weight apparatus at 5 m s-1. The AISI 304 stainless steel sandwich beams comprised two identical face sheets and represented 1:20 scale versions of ship hull designs. No significant rate effects were observed at impact speeds representative of ship collisions: the drop-weight responses were comparable to the ones measured quasi-statically. Moreover, the corrugated and Y-frame core beams had similar performances. Three-dimensional finite element (FE) models simulated the experiments and were in good agreement with the measurements. The simulations demonstrated correctly that the sandwich beams collapsed by core indentation under both quasi-static loading and in the drop-weight experiments. These FE models were then used to investigate the sensitivity of impact response to (i) velocity, over a wider range of velocities than achievable with the drop-weight apparatus, and (ii) the presence of the back face sheet. The dynamic responses of sandwich beams with both front and back face sheets were found to be within 20% of the quasi-static responses for speeds less than approximately 5 m s-1. This suggests that quasi-static considerations are adequate to model the collision of a sandwich ship hull. By contrast, beams without a back face collapsed by Brazier buckling under quasi-static loading conditions, and by core indentation at a loading velocity of 5 m s-1. Thus, dynamic considerations are needed in ship hull designs that do not employ a back face. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions. © 2014 Elsevier Ltd.