38 resultados para 154-928C
Resumo:
Far-field optimized photonic crystal nanocavities are used to strongly increase light generation from crystalline silicon. Low-power continuous-wave harmonic generation as well as efficient room temperature light-emission from optically-active defects are demonstrated in these devices. © 2011 IEEE.
Resumo:
Managing change can be challenging due to the high levels of interdependency in concurrent engineering processes. A key activity in engineering change management is propagation analysis, which can be supported using the change prediction method. In common with most other change prediction approaches, the change prediction method has three important limitations: L1: it depends on highly subjective input data; L2: it is capable of modelling 'generalised cases' only and cannot be; customised to assess specific changes; and L3: the input data are static, and thus, guidance does not reflect changes in the design. This article contributes to resolving these limitations by incorporating interface information into the change prediction method. The enhanced method is illustrated using an example based on a flight simulator. © The Author(s) 2013.
Resumo:
BACKGROUND: Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. RESULTS: The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. CONCLUSIONS: We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.
Resumo:
User-value is a determining factor for product acceptance in product design. Research on rural electrification to date, however, does not draw sufficient attention to the importance of user-value with regard to the overall success of a project. This is evident from the analysis of project reports and applicable indicators from agencies active in the sector. Learning from the design, psychology and sociology literatures, it is important that rural electrification projects incorporate the value perception of the end-user and extend their success beyond the commonly used criteria of financial value, the appropriateness of the technology, capacity building and technology uptake. Creating value for the end-user is particularly important for project acceptance and the sustainability of a scheme once it has been handed over to the local community. In this research paper, existing theories and models of value-theory are transposed and applied to community operated rural electrification schemes and a user-value framework is developed. Furthermore, the importance of value to the end-user is clarified. Current literature on product design reveals that user-value has different properties, many of which are applicable to rural electrification. Five value pillars and their sub-categories important for the users of rural electrification projects are identified, namely: functional; social significance; epistemic; emotional; and cultural values. These pillars provide the main structure for the conceptual framework developed in this research paper. It is proposed that by targeting the values of the end-user, the key factors of user-value applicable to rural electrification projects will be identified and the sustainability of the project will be better ensured. © 2014 The Authors.
Resumo:
This paper describes part of the monitoring undertaken at Abbey Mills shaft F, one of the main shafts of Thames Water's Lee tunnel project in London, UK. This shaft, with an external diameter of 30 m and 73 m deep, is one of the largest ever constructed in the UK and consequently penetrates layered and challenging ground conditions (Terrace Gravel, London Clay, Lambeth Group, Thanet Sand Formation, Chalk Formation). Three out of the twenty 1-2 m thick and 84 m deep diaphragm wall panels were equipped with fibre optic instrumentation. Bending and circumferential hoop strains were measured using Brillouin optical time-domain reflectometry and analysis technologies. These measurements showed that the overall radial movement of the wall was very small. Prior to excavation during a dewatering trial, the shaft may have experienced three-dimensional deformation due to differential water pressures. During excavation, the measured hoop and bending strains of the wall in the chalk exceeded the predictions. This appears to be related to the verticality tolerances of the diaphragm wall and lower circumferential hoop stiffness of the diaphragm walls at deep depths. The findings from this case study provide valuable information for future deep shafts in London. © ICE Publishing: All rights reserved.