438 resultados para Luttinger liquid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low attenuation of Sezawa modes operating at GHz frequencies in ZnO/GaAs systems immersed in liquid helium has been observed. This unexpected behaviour for Rayleigh-like surface acoustic waves (SAWs) is explained in terms of the calculated depth profiles of their acoustic Poynting vectors. This analysis allows reproduction of the experimental dispersion of the attenuation coefficient. In addition, the high attenuation of the Rayleigh mode is compensated by the strengthening provided by the ZnO layer. The introduction of the ZnO film will enable the operation of SAW-driven single-photon sources in GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand for aluminum in final products has increased 30-fold since 1950 to 45 million tonnes per year, with forecasts predicting this exceptional growth to continue so that demand will reach 2-3 times today's levels by 2050. Aluminum production uses 3.5% of global electricity and causes 1% of global CO2 emissions, while meeting a 50% cut in emissions by 2050 against growing demand would require at least a 75% reduction in CO2 emissions per tonne of aluminum produced--a challenging prospect. In this paper we trace the global flows of aluminum from liquid metal to final products, revealing for the first time a complete map of the aluminum system and providing a basis for future study of the emissions abatement potential of material efficiency. The resulting Sankey diagram also draws attention to two key issues. First, around half of all liquid aluminum (~39 Mt) produced each year never reaches a final product, and a detailed discussion of these high yield losses shows significant opportunities for improvement. Second, aluminum recycling, which avoids the high energy costs and emissions of electrolysis, requires signification "dilution" (~ 8 Mt) and "cascade" (~ 6 Mt) flows of higher aluminum grades to make up for the shortfall in scrap supply and to obtain the desired alloy mix, increasing the energy required for recycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate modulations of electrical conductance and hysteresis behavior in ZnO nanowire transistors via electrically polarized switching of ferroelectric liquid crystal (FLC). After coating a nanowire channel in the transistors with FLCs, we observed large increases in channel conductance and hysteresis width, and a strong dependence of hysteresis loops on the polarization states associated with the orientation of electric dipole moments along the direction of the gate electric field. Furthermore, the reversible switching and retention characteristics provide the feasibility of creating a hybrid system with switch and memory functions. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results on laser action from liquid crystal compounds whereby one sub-unit of the molecular structure consists of the cyano-substituted chromophore, {phenylene-bis (2-cyanopropene)}, similar to the basic unit of the semiconducting polymer structure poly(cyanoterephthalylidene). These compounds were found to exhibit nematic liquid crystal phases. In addition, by virtue of the liquid crystalline properties, the compounds were found to be highly miscible in wide temperature range commercial nematogen mixtures. When optically excited at λ = 355 nm, laser emission was observed in the blue/green region of the visible spectrum (480-530 nm) and at larger concentrations by weight than is achievable using conventional laser dyes. Upon increasing the concentration of dye from 2 to 5 wt.% the threshold was found to increase from Eth = 0.42 ± 0.02 μJ/pulse (≈20 mJ/cm2) to Eth = 0.66 ± 0.03 μJ/pulse (≈34 mJ/cm2). Laser emission was also observed at concentrations of 10 wt.% but was less stable than that observed for lower concentrations of the chromophore. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many bacteria on earth exist in surface-attached communities known as biofilms. These films are responsible for manifold problems, including hospital-acquired infections and biofouling, but they can also be beneficial. Biofilm growth depends on the transport of nutrients and waste, for which diffusion is thought to be the main source of transport. However, diffusion is ineffective for transport over large distances and thus should limit growth. Nevertheless, biofilms can grow to be very large. Here we report the presence of a remarkable network of well-defined channels that form in wild-type Bacillus subtilis biofilms and provide a system for enhanced transport. We observe that these channels have high permeability to liquid flow and facilitate the transport of liquid through the biofilm. In addition, we find that spatial variations in evaporative flux from the surface of these biofilms provide a driving force for the flow of liquid in the channels. These channels offer a remarkably simple system for liquid transport, and their discovery provides insight into the physiology and growth of biofilms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the design, optimization and testing of a self-regulating valve for single-phase liquid cooling of microelectronics. Its purpose is to maintain the integrated circuit (IC) at constant temperature and to reduce power consumption by diminishing flow generated by the pump as a function of the cooling requirements. It uses a thermopneumatic actuation principle that combines the advantages of zero power consumption and small size in combination with a high flow rate and low manufacturing costs. The valve actuation is provided by the thermal expansion of a liquid (actuation fluid) which, at the same time, actuates the valve and provides feed-back sensing. A maximum flow rate of 38 kg h-1 passes through the valve for a heat load up to 500 W. The valve is able to reduce the pumping power by up to 60% and it has the capability to maintain the IC at a more uniform temperature. © 2011 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluids with a controllable viscosity gained a lot of interest throughout the last years. One of the advantages of these fluids is that they allow to fabricate hydraulic components such as valves with a very simple structure. Although the properties of these fluids are very interesting for microsystems, their applicability is limited at microscale since the particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic Liquid Crystals (LCs) in microsystems. Since LC's do not contain suspended particles, they show intrinsic advantages over classic rheologic active fluids in microapplications. As a matter of fact, LC molecules are usually only a few nanometers long, and therefore, they can probably be used in systems with sub-micrometer channels or other nanoscale applications. This paper presents a novel model describing the electrorheologic behavior of these nanoscale molecules. This model is used to simulate a microvalve controlled by LC's. By comparing measurements and simulations performed on this microvalve it is possible to prove that the model developed in this paper is very accurate. In addition, these simulations and measurements revealed other remarkable properties of LC's, such as high bandwidths and high changes in flow resistance. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluids with controllable flow properties have gained considerable interest in the past few years. Some of these fluids such as magnetorheologic fluids are now widely applied to active dampers and valves. Although these fluids show promising properties for microsystems, their applicability is limited to the microscale since particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic liquid crystals (LCs) in microsystems. Since LCs do not contain suspended particles, they show intrinsic advantages over classic rheologic fluids in micro-applications. This paper presents a novel physical model that describes the static and the dynamic behaviour of electrorheologic LCs. The developed model is validated by comparing simulations and measurements performed on a rectangular microchannel. This assessment shows that the model presented in this paper is able to simulate both static and dynamic properties accurately. Therefore, this model is useful for the understanding, simulation and optimization of devices using LCs as electrorheological fluid. In addition, measurements performed in this paper reveal remarkable properties of LCs, such as high bandwidths and high changes in flow resistance. © 2006 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eight equations of state (EOS) have been evaluated for the simulation of compressible liquid water properties, based on empirical correlations, the principle of corresponding states and thermodynamic relations. The IAPWS-IF97 EOS for water was employed as the reference case. These EOSs were coupled to a modified AUSM+-up convective flux solver to determine flow profiles for three test cases of differing flow conditions. The impact of the non-viscous interaction term discretisation scheme, interfacial pressure method and selection of low-Mach number diffusion were also compared. It was shown that a consistent discretisation scheme using the AUSM+-up solver for both the convective flux and the non-viscous interfacial term demonstrated both robustness and accuracy whilst facilitating a computationally cheaper solution than discretisation of the interfacial term independently by a central scheme. The simple empirical correlations gave excellent results in comparison to the reference IAPWS-IF97 EOS and were recommended for developmental work involving water as a cheaper and more accurate EOS than the more commonly used stiffened-gas model. The correlations based on the principles of corresponding-states and the modified Peng-Robinson cubic EOS also demonstrated a high degree of accuracy, which is promising for future work with generic fluids. Further work will encompass extension of the solver to multiple dimensions and to account for other source terms such as surface tension, along with the incorporation of phase changes. © 2013.