447 resultados para Polycrystalline silicon


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contact resistance has a significant impact on the electrical characteristics of thin film transistors. It limits their maximum on-current and affects their subsequent behavior with bias. This distorts the extracted device parameters, in particular, the field-effect mobility. This letter presents a method capable of accounting for both the non-ohmic (nonlinear) and ohmic (linear) contact resistance effects solely based upon terminal I-V measurements. Applying our analysis to a nanocrystalline silicon thin film transistor, we demonstrate that contact resistance effects can lead to a twofold underestimation of the field-effect mobility. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk, polycrystalline MgB2 samples containing 2.5 wt.% multi-walled carbon nanotubes (CNTs) have been prepared by conventional solid state reaction at 800 °C. The effect of Mg precursor powders composed of two different particle sizes on the critical current density (Jc) of the as-sintered samples has been investigated. An enhancement of Jc at high field has been observed in MgB2 samples containing CNTs prepared with fine Mg powders, whereas the values of Jc in the sample prepared using the coarser Mg powders was slightly decreased. These results contrast significantly with measurements on pure, undoped, MgB2 samples prepared from the same Mg precursor powders. They suggest that carbon substitution into the MgB2 lattice, which accounts for increased flux pinning, and therefore Jc, is more effective in precursor Mg powders with a larger surface area. Rather surprisingly, the so-called fishtail effect, observed typically in MgB2 single crystals and in the (RE)BCO family of high temperature superconductors (HTSs), was observed in both sets of CNT-containing polycrystalline samples as a result of lattice defects associated with C substitution. Significantly, analytical fits to the data for each sample suggest that the same flux pinning mechanism accounts for the fishtail effect in polycrystalline MgB2 and (RE)BCO. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertically oriented GaAs nanowires (NWs) are grown on Si(111) substrates using metal-organic chemical vapor deposition. Controlled epitaxial growth along the 111 direction is demonstrated following the deposition of thin GaAs buffer layers and the elimination of structural defects, such as twin defects and stacking faults, is found for high growth rates. By systematically manipulating the AsH 3 (group-V) and TMGa (group-III) precursor flow rates, it is found that the TMGa flow rate has the most significant effect on the nanowire quality. After capping the minimal tapering and twin-free GaAs NWs with an AlGaAs shell, long exciton lifetimes (over 700ps) are obtained for high TMGa flow rate samples. It is observed that the Ga adatom concentration significantly affects the growth of GaAs NWs, with a high concentration and rapid growth leading to desirable characteristics for optoelectronic nanowire device applications including improved morphology, crystal structure and optical performance. © 2012 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the growth procedures for achieving taper-free and kinked germanium nanowires epitaxially grown on silicon substrates by chemical vapor deposition. Singly and multiply kinked germanium nanowires consisting of 111 segments were formed by employing a reactant gas purging process. Unlike non-epitaxial kinked nanowires, a two-temperature process is necessary to maintain the taper-free nature of segments in our kinked germanium nanowires on silicon. As an application, nanobridges formed between (111) side walls of V-grooved (100) silicon substrates have been demonstrated. © 2012 IOP Publishing Ltd.