437 resultados para Liquid propellants
Resumo:
The absolute responses of the NPL liquid scintillation spectrometers to monoenergetic neutrons and gammas were measured at various energies in the ranges 1.2 - 17 MeV approximately for neutrons and 0.28 - 1.8 MeV for gammas. Additional measurements of the proton light output function were also carried out. Calculated responses were then obtained for the larger detector using the programs NRESP7 and PHRESP, and compared with the absolute measurements. Finally, response matrices for this detector were generated using responses calculated at closely spaced energies.
Resumo:
The invention provides a multilayer electronic device having electrodes, formed on a laterally extending first layer, the lateral position of each of at least two adjacent electrodes being defined by a channel in the first layer. Each channel is adjacent a deposition region, the material which forms each electrode substantially covering the deposition region to form a continuous conductive structure.
Resumo:
Restricted deposits of fossil fuels and ecological problems created by their extensive use require a transition to renewable energy resources and clean fuel free from emissions of CO2. This fuel is likely to be liquid hydrogen. An important feature of liquid hydrogen is that it allows wide use of superconductivity. Superconductors provide compactness, high efficiency, savings in energy and a range of new applications not possible with other materials. The benefits of superconductivity justify use of low temperatures and facilitate development of fossil-free energy economy. The widespread use of superconductors requires a simple and reliable technique to monitor their properties. Magneto-optical imaging (MOI) is currently the only direct technique allowing visualization of the superconducting properties of materials. We report the application of this technique to key superconducting materials suitable for the hydrogen economy: MgB2 and high temperature superconductors (HTS) in bulk and thin-film form. The study shows that the MOI technique is well suited to the study of these materials. It demonstrates the advantage of HTS at liquid hydrogen temperatures and emphasizes the benefits of MgB2, in particular. © 2012 Springer Science+Business Media New York.
Resumo:
Several equations of state (EOS) have been incorporated into a novel algorithm to solve a system of multi-phase equations in which all phases are assumed to be compressible to varying degrees. The EOSs are used to both supply functional relationships to couple the conservative variables to the primitive variables and to calculate accurately thermodynamic quantities of interest, such as the speed of sound. Each EOS has a defined balance of accuracy, robustness and computational speed; selection of an appropriate EOS is generally problem-dependent. This work employs an AUSM+-up method for accurate discretisation of the convective flux terms with modified low-Mach number dissipation for added robustness of the solver. In this paper we show a newly-developed time-marching formulation for temporal discretisation of the governing equations with incorporated time-dependent source terms, as well as considering the system of eigenvalues that render the governing equations hyperbolic.
Resumo:
Liquid crystal lasers offer wide, continuous tuneability across the visible and near-infrared (450-850 nm). Compared to conventional tuneable laser technology, liquid crystal lasers are highly compact and have simple and scalable manufacturability. Their ability to emit multiple simultaneous emissions of arbitrarily selectable wavelength also gives them functional advantages over competing technologies. This paper describes Förster transfer techniques that have enabled this extended continuously tunable emission range, whilst maintaining a common pump source. © 2012 OSA.
Resumo:
We report optically induced phase transtions occurring in two different host ferroelectric liquid crystals; SCE13 a multicomponentmixture optimised for room temperature performance, and CE8 a single component liquid crystal. These act as host liquid crystals for a novel guest azo dye, which can be made to photoisomerise using low power density U.V. illumination, resulting in dramatic changes in sample properties. We have shown that the magnitude of spontaneous polarisation of systems can be isothermally and reversibly induced or reduced, with the consequent appearance or disappearance of optical switching hysteresis. We discuss the parameters controlling the behaviour of the systems under U.V. illumination and suggest mechansims by which the transitions may occur. © 1993, Taylor & Francis Group, LLC. All rights reserved.
Resumo:
The wavelength-division multiplexing (WDM) has been proposed as a promising technology to efficiently use the available bandwidth of a single optical fibre. This can be achieved by transmitting different channels on the optical fibre with each channel modulating a different wavelength. The aim of this paper is to propose a compact design (35 mm×65 mm) of a reconfigurable holographic optical switch in order to access and manipulate 4 channels at a node of a fibre-optic communication network. A vital component of such a switch is a nematic liquid crystal spatial light modulator offering control and flexibility at the channel manipulation stage and providing the ability to redirect light into the desired output fibre. This is achieved by the use of a 2-D analogue phase computer generated hologram (CGH) based on liquid crystal on silicon (LCOS) technology. © 2012 SPIE.
Resumo:
High brightness trans-reflective bi-stable displays based on smectic A (SmA) liquid crystals (LCs) can have nearly perfect transparency in the clear state and very high reflection in the scattered state. Because the LC material in use is stable under UV radiation, this kind of displays can stand for strong day-light and therefore be ideal for outdoor applications from e-books to public signage and advertisement. However, the colour application has been limited because the traditional colourants in use are conventional dyes which are lack of UV stability and that their colours are easily photo bleached. Here we present a colour SmA display demonstrator using pigments as colourant. Mixing pigments with SmA LCs and maintain the desirable optical switching performance is not straightforward. We show here how it can be done, including how to obtain fine sized pigment nano-particles, the effects of particle size and size distribution on the display performance. Our optimized pigments/SmA compositions can be driven by a low frequency waveform (∼101Hz) to a scattered state to exhibit colour while by a high frequency waveform (∼103Hz) to a cleared state showing no colour. Finally, we will present its excellent UV life-time (at least >7.2 years) in comparison with that of dye composition (∼2.4 years). The complex interaction of pigment nano-particles with LC molecules and the resulting effects on the LC electro-optical performances are still to be fully understood. We hope this work will not only demonstrate a new and practical approach for outdoor reflective colour displays but also provide a new material system for fundamental liquid crystal colloid research work. © 2012 SPIE.
Resumo:
Computer simulation results are reported for a realistic polarizable potential model of water in the supercooled region. Three states, corresponding to the low density amorphous ice, high density amorphous ice, and very high density amorphous ice phases are chosen for the analyses. These states are located close to the liquid-liquid coexistence lines already shown to exist for the considered model. Thermodynamic and structural quantities are calculated, in order to characterize the properties of the three phases. The results point out the increasing relevance of the interstitial neighbors, which clearly appear in going from the low to the very high density amorphous phases. The interstitial neighbors are found to be, at the same time, also distant neighbors along the hydrogen bonded network of the molecules. The role of these interstitial neighbors has been discussed in connection with the interpretation of recent neutron scattering measurements. The structural properties of the systems are characterized by looking at the angular distribution of neighboring molecules, volume and face area distribution of the Voronoi polyhedra, and order parameters. The cumulative analysis of all the corresponding results confirms the assumption that a close similarity between the structural arrangement of molecules in the three explored amorphous phases and that of the ice polymorphs I(h), III, and VI exists.
Resumo:
The structural changes occurring in supercooled liquid water upon moving from one coexisting liquid phase to the other have been investigated by computer simulation using a polarizable interaction potential model. The obtained results favorably compare with recent neutron scattering data of high and low density water. In order to assess the physical origin of the observed structural changes, computer simulation of several ice polymorphs has also been carried out. Our results show that there is a strict analogy between the structure of various disordered (supercooled) and ordered (ice) phases of water, suggesting that the occurrence of several different phases of supercooled water is rooted in the same physical origin that is responsible for ice polymorphism.
Resumo:
Low attenuation of Sezawa modes operating at GHz frequencies in ZnO/GaAs systems immersed in liquid helium has been observed. This unexpected behaviour for Rayleigh-like surface acoustic waves (SAWs) is explained in terms of the calculated depth profiles of their acoustic Poynting vectors. This analysis allows reproduction of the experimental dispersion of the attenuation coefficient. In addition, the high attenuation of the Rayleigh mode is compensated by the strengthening provided by the ZnO layer. The introduction of the ZnO film will enable the operation of SAW-driven single-photon sources in GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2013 American Institute of Physics.