428 resultados para MACROPOROUS SILICON
Resumo:
Contact resistance has a significant impact on the electrical characteristics of thin film transistors. It limits their maximum on-current and affects their subsequent behavior with bias. This distorts the extracted device parameters, in particular, the field-effect mobility. This letter presents a method capable of accounting for both the non-ohmic (nonlinear) and ohmic (linear) contact resistance effects solely based upon terminal I-V measurements. Applying our analysis to a nanocrystalline silicon thin film transistor, we demonstrate that contact resistance effects can lead to a twofold underestimation of the field-effect mobility. © 2008 American Institute of Physics.
Resumo:
Vertically oriented GaAs nanowires (NWs) are grown on Si(111) substrates using metal-organic chemical vapor deposition. Controlled epitaxial growth along the 111 direction is demonstrated following the deposition of thin GaAs buffer layers and the elimination of structural defects, such as twin defects and stacking faults, is found for high growth rates. By systematically manipulating the AsH 3 (group-V) and TMGa (group-III) precursor flow rates, it is found that the TMGa flow rate has the most significant effect on the nanowire quality. After capping the minimal tapering and twin-free GaAs NWs with an AlGaAs shell, long exciton lifetimes (over 700ps) are obtained for high TMGa flow rate samples. It is observed that the Ga adatom concentration significantly affects the growth of GaAs NWs, with a high concentration and rapid growth leading to desirable characteristics for optoelectronic nanowire device applications including improved morphology, crystal structure and optical performance. © 2012 IOP Publishing Ltd.
Resumo:
We investigate the growth procedures for achieving taper-free and kinked germanium nanowires epitaxially grown on silicon substrates by chemical vapor deposition. Singly and multiply kinked germanium nanowires consisting of 111 segments were formed by employing a reactant gas purging process. Unlike non-epitaxial kinked nanowires, a two-temperature process is necessary to maintain the taper-free nature of segments in our kinked germanium nanowires on silicon. As an application, nanobridges formed between (111) side walls of V-grooved (100) silicon substrates have been demonstrated. © 2012 IOP Publishing Ltd.
Resumo:
We demonstrate a method to realize vertically oriented Ge nanowires on Si(111) substrates. Ge nanowires were grown by chemical vapor deposition using Au nanoparticles to seed nanowire growth via a vapor-liquid-solid growth mechanism. Rapid oxidation of Si during Au nanoparticle application inhibits the growth of vertically oriented Ge nanowires directly on Si. The present method employs thin Ge buffer layers grown at low temperature less than 600 degrees C to circumvent the oxidation problem. By using a thin Ge buffer layer with root-mean-square roughness of approximately 2 nm, the yield of vertically oriented Ge nanowires is as high as 96.3%. This yield is comparable to that of homoepitaxial Ge nanowires. Furthermore, branched Ge nanowires could be successfully grown on these vertically oriented Ge nanowires by a secondary seeding technique. Since the buffer layers are grown under moderate conditions without any high temperature processing steps, this method has a wide process window highly suitable for Si-based microelectronics.
Resumo:
Silicon Carbide Bipolar Junction Transistors require a continuous base current in the on-state. This base current is usually made constant and is corresponding to the maximum collector current and maximum junction temperature that is foreseen in a certain application. In this paper, a discretized proportional base driver is proposed which will reduce, for the right application, the steady-state power consumption of the base driver. The operation of the proposed base driver has been verified experimentally, driving a 1200V/40A SiC BJT in a DC-DC boost converter. In order to determine the potential reduction of the power consumption of the base driver, a case with a dc-dc converter in an ideal electric vehicle driving the new European drive cycle has been investigated. It is found that the steady-state power consumption of the base driver can be reduced by approximately 63 %. The total reduction of the driver consumption is 2816 J during the drive cycle, which is slightly more than the total on-state losses for the SiC BJTs used in the converter. © 2013 IEEE.
Resumo:
All-chemical vapor deposited silicon nitride / monolayer graphene TFTs have been fabricated. Polychromatic Raman spectroscopy shows high quality monolayer graphene channels with uniform coverage and significant interfacial doping at the source-drain contacts. Nominal mobilities of approximately 1900 cm 2V-1s-1 have been measured opening up a potentially useful platform for analogue and RFR-based applications fabricated through allchemical vapor deposition processes. © The Electrochemical Society.