369 resultados para recording materials
Resumo:
Lattice materials are characterized at the microscopic level by a regular pattern of voids confined by walls. Recent rapid prototyping techniques allow their manufacturing from a wide range of solid materials, ensuring high degrees of accuracy and limited costs. The microstructure of lattice material permits to obtain macroscopic properties and structural performance, such as very high stiffness to weight ratios, highly anisotropy, high specific energy dissipation capability and an extended elastic range, which cannot be attained by uniform materials. Among several applications, lattice materials are of special interest for the design of morphing structures, energy absorbing components and hard tissue scaffold for biomedical prostheses. Their macroscopic mechanical properties can be finely tuned by properly selecting the lattice topology and the material of the walls. Nevertheless, since the number of the design parameters involved is very high, and their correlation to the final macroscopic properties of the material is quite complex, reliable and robust multiscale mechanics analysis and design optimization tools are a necessary aid for their practical application. In this paper, the optimization of lattice materials parameters is illustrated with reference to the design of a bracket subjected to a point load. Given the geometric shape and the boundary conditions of the component, the parameters of four selected topologies have been optimized to concurrently maximize the component stiffness and minimize its mass. Copyright © 2011 by ASME.
Resumo:
Two adaptive numerical modelling techniques have been applied to prediction of fatigue thresholds in Ni-base superalloys. A Bayesian neural network and a neurofuzzy network have been compared, both of which have the ability to automatically adjust the network's complexity to the current dataset. In both cases, despite inevitable data restrictions, threshold values have been modelled with some degree of success. However, it is argued in this paper that the neurofuzzy modelling approach offers real benefits over the use of a classical neural network as the mathematical complexity of the relationships can be restricted to allow for the paucity of data, and the linguistic fuzzy rules produced allow assessment of the model without extensive interrogation and examination using a hypothetical dataset. The additive neurofuzzy network structure means that redundant inputs can be excluded from the model and simple sub-networks produced which represent global output trends. Both of these aspects are important for final verification and validation of the information extracted from the numerical data. In some situations neurofuzzy networks may require less data to produce a stable solution, and may be easier to verify in the light of existing physical understanding because of the production of transparent linguistic rules. © 1999 Elsevier Science S.A.
Resumo:
We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon emissions from a country perspective, tracking the rise of China and other developing countries. The results show not only a rise in the economic fortunes of the newly industrializing nations, but also a significant rise in global pollution, particularly air pollution and CO2 emissions largely from coal use, which alter and even reverse previous global trends. In the second part, we change perspective and quantitatively evaluate two important technical strategies to reduce pollution and carbon emissions: energy efficiency and materials recycling. We subdivide the manufacturing sector on the basis of the five major subsectors that dominate energy use and carbon emissions: (a) iron and steel, (b) cement, (c) plastics, (d) paper, and (e) aluminum. The analysis identifies technical constraints on these strategies, but by combined and aggressive action, industry should be able to balance increases in demand with these technical improvements. The result would be high but relatively flat energy use and carbon emissions. The review closes by demonstrating the consequences of extrapolating trends in production and carbon emissions and suggesting two options for further environmental improvements, materials efficiency, and demand reduction. © 2013 by Annual Reviews. All rights reserved.
Resumo:
The mechanics of failure for elastic-brittle lattice materials is reviewed. Closed-form expressions are summarized for fracture toughness as a function of relative density for a wide range of periodic lattices. A variety of theoretical and numerical approaches has been developed in the literature and in the main the predictions coincide for any given topology. However, there are discrepancies and the underlying reasons for these are highlighted. The role of imperfections at the cell wall level can be accounted for by Weibull analysis. Nevertheless, defects can also arise on the meso-scale in the form of misplaced joints, wavy cell walls and randomly distributed missing cell walls. These degrade the macroscopic fracture toughness of the lattice. © 2010 Springer Science+Business Media B.V.