440 resultados para Ferrari


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein we present an inexpensive facile wet-chemistry-free approach to the transfer of chemical vapour-deposited multiwalled carbon nanotubes to flexible transparent polymer substrates in a single-step process. By controlling the nanotube length, we demonstrate accurate control over the electrical conductivity and optical transparency of the transferred thin films. Uniaxial strains of up to 140% induced only minor reductions in sample conductivity, opening up a number of applications in stretchable electronics. Nanotube alignment offers enhanced functionality for applications such as polarisation selective electrodes and flexible supercapacitor substrates. A capacitance of 17F/g was determined for supercapacitors fabricated from the reported dry-transferred MWCNTs with the corresponding cyclic voltagrams showing a clear dependence on nanotube length. © 2012 Matthew Cole et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ∼43cm -1 in bulk graphite to ∼31cm -1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sub-picosecond tunable ultrafast lasers are important tools for many applications. Here we present an ultrafast tunable fiber laser mode-locked by a nanotube based saturable absorber. The laser outputs ∼500fs pulses over a 33 nm range at 1.5μm. This outperforms the current achievable pulse duration from tunable nanotube mode-locked lasers. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform Raman scattering experiments on natural graphite in magnetic fields up to 45 T, observing a series of peaks due to interband electronic excitations over a much broader magnetic field range than previously reported. We also explore electron-phonon coupling in graphite via magnetophonon resonances. The Raman G peak shifts and splits as a function of magnetic field, due to the magnetically tuned coupling of the E 2g optical phonons with the K- and H-point inter-Landau-level excitations. The analysis of the observed anticrossing behavior allows us to determine the electron-phonon coupling for both K- and H-point carriers. In the highest field range (>35 T) the G peak narrows due to suppression of electron-phonon interaction. © 2012 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafast lasers play a key role in a variety of devices, from basic research to materials processing and medicine. Graphene has great potential as saturable absorber for ultrafast lasers. Here we present an overview of graphene-based ultrafast lasers, from solution processing of the raw materials, to their incorporation into polymers, device fabrication and testing. © 2011 The Japan Society of Applied Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present a flexible Electrostatic Tactile (ET) surface/display realized by using new emerging material graphene. The graphene is transparent conductor which successfully replaces previous solution based on indium-thin oxide (ITO) and delivers more reliable solution for flexible and bendable displays. The electrostatic tactile surface is capable of delivering programmable, location specific tactile textures. The ET device has an area of 25 cm 2, and consists of 130 μm thin optically transparent (>76%) and mechanically flexible structure overlaid unobtrusively on top of a display. The ET system exploits electro vibration phenomena to enable on-demand control of the frictional force between the user's fingertip and the device surface. The ET device is integrated through a controller on a mobile display platform to generate fully programmable range of stimulating signals. The ET haptic feedback is formed in accordance with the visual information displayed underneath, with the magnitude and pattern of the frictional force correlated with both the images and the coordinates of the actual touch in real time forming virtual textures on the display surface (haptic virtual silhouette). To quantify rate of change in friction force we performed a dynamic friction coefficient measurement with a system involving an artificial finger mimicking the actual touch. During operation, the dynamic friction between the ET surface and an artificial finger stimulation increases by 26% when the load is 0.8 N and by 24% when the load is 1 N. © 2012 ACM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use laser beams with radial and azimuthal polarization to optically trap carbon nanotubes. We measure force constants and trap parameters as a function of power showing improved axial trapping efficiency with respect to linearly polarized beams. The analysis of the thermal fluctuations highlights a significant change in the optical trapping potential when using cylindrical vector beams. This enables the use of polarization states to shape optical traps according to the particle geometry, as well as paving the way to nanoprobe-based photonic force microscopy with increased performance compared to a standard linearly polarized configuration. © 2012 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an erbium-doped, nanotube mode-locked fiber oscillator generating 74 fs pulses with 63 nm spectral width. This all-fiber-based laser is a simple, low-cost source for time-resolved optical spectroscopy, as well as for many applications where high resolution driven by short pulse durations is required. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate mode-locking of a thulium-doped fiber laser operating at 1.94 μm, using a graphene-polymer based saturable absorber. The laser outputs 3.6 ps pulses, with ∼0.4 nJ energy and an amplitude fluctuation ∼0.5%, at 6.46 MHz. This is a simple, low-cost, stable and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics. © 2012 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-covalent functionalization of CoMoCAT single-wall carbon nanotubes (SWNTs) by bovine serum albumin (BSA) was achieved. Photoluminescence spectra for the functionalized nanotubes showed good dispersion by BSA functionalization. Raman spectra were taken for the sonicated SWNT-BSA solution to establish the signal versus concentration correlation. Cellular uptake of functionalized carbon nanotubes by mouse macrophage (RAW264.7) was then investigated using Raman spectroscopy. For a seeding density of 50% confluence in a culture solution containing 10 μg/ml of BSA-SWNTs, uptake of 200 μg/ml by the macrophages was recorded after 23hr incubation, indicating an active uptake of SWNTs. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2012 OSA.