370 resultados para noise filter
Resumo:
Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.
Resumo:
This paper presents a new formulation for trailing edge noise radiation from rotating blades based on an analytical solution of the convective wave equation. It accounts for distributed loading and the effect of mean flow and spanwise wavenumber. A commonly used theory due to Schlinker and Amiet (1981) predicts trailing edge noise radiation from rotating blades. However, different versions of the theory exist; it is not known which version is the correct one and what the range of validity of the theory is. This paper addresses both questions by deriving Schlinker and Amiet's theory in a simple way and by comparing it to the new formulation, using model blade elements representative of a wind turbine, a cooling fan and an aircraft propeller. The correct form of Schlinker and Amiet's theory (1981) is identified. It is valid at high enough frequency, i.e. for a Helmholtz number relative to chord greater than one and a rotational frequency much smaller than the angular frequency of the noise sources.
Resumo:
A new scalable Monotonically Integrated Large Eddy Simulation (MILES) method based on the Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) has been applied for the simulation of unsteady flow around NACA0012 airfoil at Re = 400,000 and M = 0.058. The flow solution is coupled with the Ffowcs Williams-Hawkings formulation for far-field noise prediction. The computational modeling results are presented for several computational grid resolutions: 8, 16, and 32 million grid cells and compared with the experimental data available.