348 resultados para Noise mapping
Resumo:
The present study aims at investigating the effect of a swirling mean flow and a lined annular duct on rotor trailing-edge noise. The objectives are to investigate these effects on the eigenvalues and a tailored Green's function on one hand and on the realistic case of the fan trailing-edge noise on the other hand. Indeed, the mean flow in between the rotor and the stator of the fan is highly swirling. Moreover, interstage liners are used to reduce the noise produced by the fan stage. The extension of Ffowcs-Williams & Hawkings' acoustic analogy in a medium at rest with moving surfaces, of Goldstein's acoustic analogy in a hardwall circular duct with uniform mean flow and of Rienstra & Tester's Green's function in an annular lined duct with uniform mean flow to a swirling mean flow in an annular duct with liner is introduced. First, the eigenvalues and the Green's function are investigated showing a strong effect of the swirl and of the liner. Second, a rotor trailing-edge noise model accounting for both the effects of the annular duct with lined walls and the swirling mean flow is developed and applied to a realistic fan rotor with different swirling mean flows (and as a result different associated blade stagger angles). The benchmark cases are built from the Boeing 18-inch Fan Rig Broadband Noise Test. In all cases the swirling mean flow has a strong effect on the absolute noise level. The overall liner insertion loss is little changed by the swirl in the studied cases.
Resumo:
The interaction of a turbulent eddy with a semi-infinite, poroelastic edge is examined with respect to the effects of both elasticity and porosity on the efficiency of aerodynamic noise generation. The edge is modelled as a thin plate poroelastic plate, which is known to admit fifth-, sixth-, and seventh-power noise dependences on a characteristic velocity U of the turbulent eddy. The associated acoustic scattering problem is solved using the Wiener-Hopf technique for the case of constant plate properties. For the special cases of porous-rigid and impermeable-elastic plate conditions, asymptotic analysis of the Wiener- Hopf kernel function furnishes the parameter groups and their ranges where U5, U6, and U7 behaviours are expected to occur. Results from this analysis attempt to help guide the search for passive edge treatments to reduce trailing-edge noise that are inspired by the wing features of silently flying owls. Furthermore, the appropriateness of the present model to the owl noise problem is discussed with respect to the acoustic frequencies of interest, wing chord-lengths, and foraging behaviour across a representative set of owl species.
Resumo:
This study develops a single-stream jet noise prediction model for a family of chevron nozzles. An original equation is proposed for the fourth-order space-time cross-correlations. They are expressed in flow parameters such as streamwise circulation and turbulent kinetic energy. The cross-correlations based on a Reynolds Averaged Navier-Stokes (RANS) flowfield showed a good agreement with those based on a Large Eddy Simulation (LES) flowfield. This proves that the proposed equation describes the cross-correlations accurately. With this novel source description, there is an excellent agreement between our model's far-field noise predictions and measurements1 for a wide range of frequencies and radiation angles. Our model captures the spectral shape, amplitude and peak frequency very well. This establishes that our model holds good for a family of chevron nozzles. As our model provides quick and accurate predictions, a parametric study was performed to understand the effects of a chevron nozzle geometry on jet noise and thrust loss. Chevron penetration is the underpinning factor for jet noise reduction. The reduction of jet noise per unit thrust loss decreases linearly with chevron penetration. The number of chevrons also has a considerable effect on jet noise.
Resumo:
Modeling the noise originating from a landing gear has proven to be a challenging task, because of its complicated structure. In full-scale, landing gear noise can only be investigated experimentally by source localization techniques and fly-over measurements with microphone arrays. In the present work, measurements of a Boeing B747-400 were used to determine the contribution of the landing gear to the overall noise emitted during a fly-over and how the broadband noise from the landing gear scales with the flight velocity. A tonal source from the nose landing gear was identified at 380 Hz with a harmonic at 760 Hz and it most likely originates from a cavity. It was also found that the Power Spectral Density (PSD) of the high frequency broadband component varies linearly with frequency and there is some scaling with the ow velocity. Finally, the nose landing gear was shown to be a significant contributor to the overall airframe noise as expected.
Resumo:
A turbulent boundary-layer flow over a rough wall generates a dipole sound field as the near-field hydrodynamic disturbances in the turbulent boundary-layer scatter into radiated sound at small surface irregularities. In this paper, phased microphone arrays are applied to the experimental study of surface roughness noise. The radiated sound from two rough plates and one smooth plate in an open jet is measured at three streamwise locations, and the beamforming source maps demonstrate the dipole directivity. Higher source strengths can be observed in the rough plates than the smooth plate, and the rough plates also enhance the trailing-edge noise. A prediction scheme in previous theoretical work is used to describe the strength of a distribution of incoherent dipoles over the rigid plate and to simulate the sound detected by the microphone array. Source maps of measurement and simulation exhibit encouraging similarities in both source pattern and source strength, which confirms the dipole nature and the predicted magnitude of roughness noise. The simulations underestimate the streamwise gradient of the source strengths and overestimate the source strengths at the highest frequency. © 2007 by Yu Liu and Ann P. Dowling.
Resumo:
Purpose: Although business models that deliver sustainability are increasingly popular in the literature, few tools that assist in sustainable business modelling have been identified. This paper investigates how businesses might create balanced social, environmental and economic value through integrating sustainability more fully into the core of their business. A value mapping tool is developed to help firms create value propositions better suited for sustainability. Design/methodology/approach: In addition to a literature review, six sustainable companies were interviewed to understand their approaches to business modelling, using a case study approach. Building on the literature and practice, a tool was developed which was pilot tested through use in a workshop. The resulting improved tool and process was subsequently refined through use in 13 workshops. Findings: A novel value mapping tool was developed to support sustainable business modelling, which introduces three forms of value (value captured, missed/destroyed or wasted, and opportunity) and four major stakeholder groups (environment, society, customer, and network actors). Practical implications: This tool intends to support business modelling for sustainability by assisting firms in better understanding their overall value proposition, both positive and negative, for all relevant stakeholders in the value network. Originality/value: The tool adopts a multiple stakeholder view of value, a network rather than firm centric perspective, and introduces a novel way of conceptualising value that specifically introduces value destroyed or wasted/ missed, in addition to the current value proposition and new opportunities for value creation. © Emerald Group Publishing Limited.
Resumo:
Abstract A theoretical model is developed for the sound scattered when a sound wave is incident on a cambered aerofoil at non-zero angle of attack. The model is based on the linearization of the Euler equations about a steady subsonic flow, and is an adaptation of previous work which considered incident vortical disturbances. Only high-frequency sound waves are considered. The aerofoil thickness, camber and angle of attack are restricted such that the steady flow past the aerofoil is a small perturbation to a uniform flow. The singular perturbation analysis identifies asymptotic regions around the aerofoil; local 'inner' regions, which scale on the incident wavelength, at the leading and trailing edges of the aerofoil; Fresnel regions emanating from the leading and trailing edges of the aerofoil due to the coalescence of singularities and points of stationary phase; a wake transition region downstream of the aerofoil leading and trailing edge; and an outer region far from the aerofoil and wake. An acoustic boundary layer on the aerofoil surface and within the transition region accounts for the effects of curvature. The final result is a uniformly-valid solution for the far-field sound; the effects of angle of attack, camber and thickness are investigated. © 2013 Cambridge University Press.
Resumo:
Side by side with the great advantages of plasmonics in nanoscale light confinement, the inevitable ohmic loss results in significant joule heating in plasmonic devices. Therefore, understanding optical-induced heat generation and heat transport in integrated on-chip plasmonic devices is of major importance. Specifically, there is a need for in situ visualization of electromagnetic induced thermal energy distribution with high spatial resolution. This paper studies the heat distribution in silicon plasmonic nanotips. Light is coupled to the plasmonic nanotips from a silicon nanowaveguide that is integrated with the tip on chip. Heat is generated by light absorption in the metal surrounding the silicon nanotip. The steady-state thermal distribution is studied numerically and measured experimentally using the approach of scanning thermal microscopy. It is shown that following the nanoscale heat generation by a 10 mW light source within a silicon photonic waveguide the temperature in the region of the nanotip is increased by ∼ 15 °C compared with the ambient temperature. Furthermore, we also perform a numerical study of the dynamics of the heat transport. Given the nanoscale dimensions of the structure, significant heating is expected to occur within the time frame of picoseconds. The capability of measuring temperature distribution of plasmonic structures at the nanoscale is shown to be a powerful tool and may be used in future applications related to thermal plasmonic applications such as control heating of liquids, thermal photovoltaic, nanochemistry, medicine, heat-assisted magnetic memories, and nanolithography.
Resumo:
An innovative, simple, compact and low cost approach for phase mapping based on the intrinsic modulation of an aperture Near Field Scanning Optical Microscope probe is analyzed and experimentally demonstrated. Several nanoscale silicon waveguides are phase-mapped using this approach, and the different modes of propagation are obtained via Fourier analysis. The obtained measured results are in good agreement with the effective indexes of the modes calculated by electromagnetic simulations. Owing to its simplicity and effectiveness, the demonstrated system is a potential candidate for integration with current near field systems for the characterization of nanophotonic components and devices.
Resumo:
We experimentally demonstrate nanoscale thermal mapping of light induced heat in photonic and plasmonic devices using a thermocouple AFM tip. Numerical simulations results and nanoscale temperature measurements are presented and discussed. © OSA 2013.
Resumo:
An innovative, simple, compact and low cost approach for phase mapping based on the intrinsic modulation of an aperture Near Field Scanning Optical Microscope probe is analyzed and experimentally demonstrated. Several nanoscale silicon waveguides are phase-mapped using this approach, and the different modes of propagation are obtained via Fourier analysis. The obtained measured results are in good agreement with the effective indexes of the modes calculated by electromagnetic simulations. Owing to its simplicity and effectiveness, the demonstrated system is a potential candidate for integration with current near field systems for the characterization of nanophotonic components and devices. © 2011 Optical Society of America.