319 resultados para Posterior Layer
Resumo:
© 2014 Elsevier Masson SAS. All rights reserved. The turbulent boundary layer on a rotating disk is studied with the aim of giving a statistical description of the azimuthal velocity field and to compare it with the streamwise velocity of a turbulent two-dimensional flat-plate boundary layer. Determining the friction velocity accurately is particularly challenging and here this is done through direct measurement of the velocity distribution close to the rotating disk in the very thin viscous sublayer using hot-wire anemometry. Compared with other flow cases, the rotating-disk flow has the advantage that the highest relative velocity with respect to a stationary hot wire is at the wall itself, thereby limiting the effect of heat conduction to the wall from the hot-wire probe. Experimental results of mean, rms, skewness and flatness as well as spectral information are provided. Comparison with the two-dimensional boundary layer shows that turbulence statistics are similar in the inner region, although the rms-level is lower and the maximum spectral content is found at smaller wavelengths for the rotating case. These features both indicate that the outer flow structures are less influential in the inner region for the rotating case.
Resumo:
Optically pumped ultrafast vertical external cavity surface emitting lasers (VECSELs), also referred to as semiconductor disk lasers (SDLs), are very attractive sources for ps- and fs-pulses in the near infrared [1]. So far VECSELs have been passively modelocked with semiconductor saturable absorber mirrors (SESAMs, [2]). Graphene has emerged as a promising saturable absorber (SA) for a variety of applications [3-5], since it offers an almost unlimited bandwidth and a fast recovery time [3-5]. A number of different laser types and gain materials have been modelocked with graphene SAs [3-4], including fiber [5] and solid-state bulk lasers [6-7]. Ultrafast VECSELs are based on a high-Q cavity, which requires very low-loss SAs compared to other lasers (e.g., fiber lasers). Here we develop a single-layer graphene saturable absorber mirror (GSAM) and use it to passively modelock a VECSEL. © 2013 IEEE.
Resumo:
The impulsive optical excitation of carriers in graphene creates an out-of-equilibrium distribution, which thermalizes on an ultrafast timescale [1-4]. This hot Fermi-Dirac (FD) distribution subsequently cools via phonon emission within few hundreds of femtoseconds. While the relaxation mechanisms mediated by phonons have been extensively investigated, the initial stages, ruled by fundamental electron-electron (e-e) interactions still pose a challenge. © 2013 IEEE.
Resumo:
We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage. © 2014 AIP Publishing LLC.