388 resultados para Geothermal engineering
Resumo:
Purpose: This paper aims to improve understanding of how to manage global network operations from an engineering perspective. Design/methodology/approach: This research adopted a theory building approach based on case studies. Grounded in the existing literature, the theoretical framework was refined and enriched through nine in-depth case studies in the industry sectors of aerospace, automotives, defence and electrics and electronics. Findings: This paper demonstrates the main value creation mechanisms of global network operations along the engineering value chain. Typical organisational features to support the value creation mechanisms are captured, and the key issues in engineering network design and operations are presented with an overall framework. Practical implications: Evidenced by a series of pilot applications, outputs of this research can help companies to improve the performance of their current engineering networks and design new engineering networks to better support their global businesses and customers in a systematic way. Originality/value: Issues about the design and operations of global engineering networks (GEN) are poorly understood in the existing literature in contrast to their apparent importance in value creation and realisation. To address this knowledge gap, this paper introduces the concept of engineering value chain to highlight the potential of a value chain approach to the exploration of engineering activities in a complex business context. At the same time, it develops an overall framework for managing GEN along the engineering value chain. This improves our understanding of engineering in industrial value chains and extends the theoretical understanding of GEN through integrating the engineering network theories and the value chain concepts. © Emerald Group Publishing Limited.
Resumo:
Introducing a "Cheaper, Faster, Better" product in today's highly competitive market is a challenging target. Therefore, for organizations to improve their performance in this area, they need to adopt methods such as process modelling, risk mitigation and lean principles. Recently, several industries and researchers focused efforts on transferring the value orientation concept to other phases of the Product Life Cycle (PLC) such as Product Development (PD), after its evident success in manufacturing. In PD, value maximization, which is the main objective of lean theory, has been of particular interest as an improvement concept that can enhance process flow logistics and support decision-making. This paper presents an ongoing study of the current understanding of value thinking in PD (VPD) with a focus on value dimensions and implementation benefits. The purpose of this study is to consider the current state of knowledge regarding value thinking in PD, and to propose a definition of value and a framework for analyzing value delivery. The framework-named the Value Cycle Map (VCM)- intends to facilitate understanding of value and its delivery mechanism in the context of the PLC. We suggest the VCM could be used as a foundation for future research in value modelling and measurement in PD.
Resumo:
Engineering change is a significant part of any product development programme. Changes can arise at many points throughout the product life-cycle, resulting in rework which can ripple through different stages of the design process. Managing change processes is thus a critical aspect of any design project, especially in complex design. Through a literature review, this paper shows the diversity of information models used by different change management methods proposed in the literature. A classification framework for organising these change management approaches is presented. The review shows an increase in the number of cross-domain models proposed to help manage changes.
Resumo:
Services based around complex engineering equipment and systems provide substantial challenges in both the long-term management of the equipment and the need for guaranteed delivery of the related service. One of the challenges for an organisation providing these services is the management of the information that is required to design, deliver and subsequently assess the success of the service. To assist in this process this paper develops a model for capturing, organising and assessing information requirements for these Complex Engineering Services in which information required to support key decisions in the life cycle of the service is identified. The model – referred to as The 12-Box Model for Service Information Requirements – is embedded in a three-phase procedure for providing an assessment of information requirements of a service contract which also provides insight into the capabilities of available information systems in supporting the contract. An illustrative example examining service information in an aircraft availability contract is used to demonstrate the use of the 12-Box Model and associated assessment procedure.
Resumo:
Tissue engineering offers a paradigm shift in the treatment of back pain. Engineered intervertebral discs could replace degenerated tissue and overcome the limitations of current treatments, which substantially alter the biomechanical properties of the spine. The centre of the disc, the nucleus pulposus, is an amorphous gel with a large bound water content and it can resist substantial compressive loads. Due to similarities in their compositions, hydrogels have frequently been considered as substitutes for the nucleus pulposus. However, there has been limited work characterising the time-dependent mechanical behaviour of hydrogel scaffolds for nucleus pulposus tissue engineering. Poroelastic behaviour, which plays a key role in nutrient transport, is of particular importance. Here, we investigate the time-dependent mechanical properties of gelatin and agar hydrogels and of gelatin-agar composites. The time-dependent properties of these hydrogels are explored using viscoelastic and poroelastic frameworks. Several gel formulations demonstrate comparable equilibrium elastic behaviour to the nucleus pulposus under unconfined compression, but permeability values that are much greater than those of the native tissue. A range of time-dependent responses are observed in the composite gels examined, presenting the opportunity for targeted design of custom hydrogels with combinations of mechanical properties optimized for tissue engineering applications. © 2011 Elsevier Ltd.
Resumo:
The analysis of scientific data is integral to materials engineering and science. The correlation between measured variables is often quantified by estimating the coefficient of determination or the r2 value. This is the recognised procedure for determining linear relationships. The authors review the derivation of the r2 value and derive an associated quantity, termed the relative deviation (RD), which is the ratio of the root mean square of the deviations about the fitted line to the root mean square of the deviations about the y bar line expressed as a percentage. The relative deviation has an advantage over the coefficient of determination in that it has greater numerical sensitivity to changes in the spread of data about the fitted line, especially when the scatter is small. In addition, the relative deviation is able to define, in percentage terms, the reduction in scatter when different independent variables are correlated with a common dependent variable. Four case studies in the materials field (aggregate crushing value, Atterberg limits, permeability and creep of asphalt) from work carried out at the Queensland Main Roads Department are presented to show the use of the new parameter RD.