380 resultados para ANNULAR MODE
Resumo:
We develop an analytical theory of high-power passively mode-locked lasers with a slow absorber; the theory is valid at pulse energies well exceeding the saturation energy. We analyze the Haus modelocking master equation in the pulse-energy-domain representation, approximating the intensity profile function by a series in the vicinity of its peak value. We consider the high-power operation regime of subpicosecond blue-violet GaN mode-locked diode lasers, using the approach developed. © 2010 Springer Science+Business Media, Inc.
Resumo:
An Agat-SF linear-scan streak image-converter camera was used to record output pulses of 2. 7 psec duration generated by an injection laser with an external dispersive resonator operated in the active mode-locking regime. The duration of the pulses was determined by the reciprocal of the spectral width and the product of the duration and the spectral width was 0. 30.
Resumo:
The present study aims at investigating the effect of a swirling mean flow and a lined annular duct on rotor trailing-edge noise. The objectives are to investigate these effects on the eigenvalues and a tailored Green's function on one hand and on the realistic case of the fan trailing-edge noise on the other hand. Indeed, the mean flow in between the rotor and the stator of the fan is highly swirling. Moreover, interstage liners are used to reduce the noise produced by the fan stage. The extension of Ffowcs-Williams & Hawkings' acoustic analogy in a medium at rest with moving surfaces, of Goldstein's acoustic analogy in a hardwall circular duct with uniform mean flow and of Rienstra & Tester's Green's function in an annular lined duct with uniform mean flow to a swirling mean flow in an annular duct with liner is introduced. First, the eigenvalues and the Green's function are investigated showing a strong effect of the swirl and of the liner. Second, a rotor trailing-edge noise model accounting for both the effects of the annular duct with lined walls and the swirling mean flow is developed and applied to a realistic fan rotor with different swirling mean flows (and as a result different associated blade stagger angles). The benchmark cases are built from the Boeing 18-inch Fan Rig Broadband Noise Test. In all cases the swirling mean flow has a strong effect on the absolute noise level. The overall liner insertion loss is little changed by the swirl in the studied cases.
Resumo:
This paper is concerned with modelling the effects of swirling flow on turbomachinery noise. We develop an acoustic analogy to predict sound generation in a swirling and sheared base flow in an annular duct, including the presence of moving solid surfaces to account for blade rows. In so doing we have extended a number of classical earlier results, including Ffowcs Williams & Hawkings' equation in a medium at rest with moving surfaces, and Lilley's equation for a sheared but non-swirling jet. By rearranging the Navier-Stokes equations we find a single equation, in the form of a sixth-order differential operator acting on the fluctuating pressure field on the left-hand side and a series of volume and surface source terms on the right-hand side; the form of these source terms depends strongly on the presence of swirl and radial shear. The integral form of this equation is then derived, using the Green's function tailored to the base flow in the (rigid) duct. As is often the case in duct acoustics, it is then convenient to move into temporal, axial and azimuthal Fourier space, where the Green's function is computed numerically. This formulation can then be applied to a number of turbomachinery noise sources. For definiteness here we consider the noise produced downstream when a steady distortion flow is incident on the fan from upstream, and compare our results with those obtained using a simplistic but commonly used Doppler correction method. We show that in all but the simplest case the full inclusion of swirl within an acoustic analogy, as described in this paper, is required. © 2013 Cambridge University Press.
Resumo:
The fracture behavior of thin films of bitumen in double cantilever beam (DCB) specimens was investigated over a wide range of temperature and loading rate conditions using finite-element analysis. The model includes a phenomenological model for the mechanical behavior of bitumen, implemented into a special-purpose finite-element user material subroutine, combined with a cohesive zone model (CZM) for simulating the fracture process. The finite-element model is validated against experimental results from laboratory tests of DCB specimens by comparing measured and predicted load-line deflection histories and fracture energy release rates. Computer simulation results agreed well with experimental data of DCB joints containing bitumen films in terms of peak stress, fracture toughness, and stress-strain history response. The predicted "normalized toughness," G=2h, was found to increase in a power-law manner with effective temperaturecompensated strain rate in the ductile region as previously observed experimentally. In the brittle regime, G=2h is virtually constant. The model successfully captured the ductile and brittle failure behavior of bitumen films in opening mode (tension) for stable crack growth conditions. © 2013 American Society of Civil Engineers.
Resumo:
This theoretical study investigates spinning and standing modes in azimuthally symmetric annular combustion chambers. Both modes are observed in experiments and simulations, and an existing model predicts that spinning modes are the only stable state of the system. We extend this model to take into account the effect that the acoustic azimuthal velocity, u, has on the flames, and propose a phenomenological model based on experiments performed on transversely forced flames. This model contains a parameter, ä, that quantifies the influence that the transversal excitation has on the fluctuating heat release. For small values of ä, spinning modes are the only stable state of the system. In an intermediate range of ä, both spinning and standing modes are stable states. For large values of ä, standing modes are the only stable state. This study shows that a flame's response to azimuthal velocity fluctuations plays an important role in determining the type of thermoacoustic oscillations found in annular combustors. © 2013 The Authors.
Resumo:
We report a versatile and cost-effective way of controlling the unsaturated loss, modulation depth and saturation fluence of graphene-based saturable absorbers (GSAs), by changing the thickness of a spacer between SLG and a high-reflection mirror. This allows us to modulate the electric field intensity enhancement at the GSA from 0 up to 400%, due to the interference of incident and reflected light at the mirror. The unsaturated loss of the SLG-mirror-assembly can be reduced to$\sim$0. We use this to mode-lock a VECSEL from 935 to 981nm. This approach can be applied to integrate SLG into various optical components, such as output coupler mirrors, dispersive mirrors, dielectric coatings on gain materials. Conversely, it can also be used to increase absorption (up to 10%) in various graphene based photonics and optoelectronics devices, such as photodetectors.
Resumo:
We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 μm etc. After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non-return to zero (NRZ) data signals over a 30 m 7-cell HC-PBGF using the offset mode launching method. In another experiment, a short piece of 19-cell HC-PBGF was used to transmit two 20 Gbit/s NRZ channels using a spatial light modulator for precise mode excitation. Bit-error-ratio (BER) performances below the forward-error-correction (FEC) threshold limit (3.3×10-3) are confirmed for both data channels when they propagate simultaneously. © 2013 IEEE.
Resumo:
We report passive mode-locking of an Er-doped fiber laser using carbon nanotubes deposited on the facet of a right-angle optical waveguide. © 2013 IEEE.
Resumo:
We demonstrate a mid-infrared Raman-soliton continuum extending from 1.9 to 3 μm in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode-locked thulium-doped fiber system, delivering 12 kW sub-picosecond pulses at 1.95 μm. This simple and robust source of light covers a portion of the atmospheric transmission window. © 2013 Optical Society of America.
Resumo:
The Spatial Light Modulator in a mode demultiplexer is used to measure the aberrations of the system in which it is installed before applying aberration correction to improve the insertion loss and modal extinction ratios. © 2013 OSA.