314 resultados para Linear transformations
Resumo:
A sensorless scheme is presented for a two-phase permanent-magnet linear machine targeted for use in marine wave-power generation. This is a field where system reliability is a key concern. The scheme is able to extract the effective inductance and back-emf of the machine's phases simultaneously from measurements of the current ripple present on the power electronic converter. These measurements can then be used to estimate position. An enhancement to the scheme in the presence of spatially-varying mutual inductance between phases allows more accurate and reliable tracking from indutance-based measurements than would otherwise be expected. This scheme is able to operate at any speed including, critically, when stationary. Experimental results show promise for the scheme, although some work to reduce the level of noise would be desirable. © 2013 IEEE.
Resumo:
We show that miscible two-layer free-surface flows of varying viscosity down an inclined substrate are different in their stability characteristics from both immiscible two-layer flows, and flows with viscosity gradients spanning the entire flow. New instability modes arise when the critical layer of the viscosity transport equation overlaps the viscosity gradient. A lubricating configuration with a less viscous wall layer is identified to be the most stabilizing at moderate miscibility (moderate Peclet numbers). This also is in contrast with the immiscible case, where the lubrication configuration is always destabilizing. The co-existence that we find under certain circumstances, of several growing overlap modes, the usual surface mode, and a Tollmien-Schlichting mode, presents interesting new possibilities for nonlinear breakdown. © 2013 AIP Publishing LLC.
Resumo:
We consider the smoothing problem for a class of conditionally linear Gaussian state-space (CLGSS) models, referred to as mixed linear/nonlinear models. In contrast to the better studied hierarchical CLGSS models, these allow for an intricate cross dependence between the linear and the nonlinear parts of the state vector. We derive a Rao-Blackwellized particle smoother (RBPS) for this model class by exploiting its tractable substructure. The smoother is of the forward filtering/backward simulation type. A key feature of the proposed method is that, unlike existing RBPS for this model class, the linear part of the state vector is marginalized out in both the forward direction and in the backward direction. © 2013 IEEE.
Resumo:
Adaptation to speaker and environment changes is an essential part of current automatic speech recognition (ASR) systems. In recent years the use of multi-layer percpetrons (MLPs) has become increasingly common in ASR systems. A standard approach to handling speaker differences when using MLPs is to apply a global speaker-specific constrained MLLR (CMLLR) transform to the features prior to training or using the MLP. This paper considers the situation when there are both speaker and channel, communication link, differences in the data. A more powerful transform, front-end CMLLR (FE-CMLLR), is applied to the inputs to the MLP to represent the channel differences. Though global, these FE-CMLLR transforms vary from time-instance to time-instance. Experiments on a channel distorted dialect Arabic conversational speech recognition task indicates the usefulness of adapting MLP features using both CMLLR and FE-CMLLR transforms. © 2013 IEEE.