321 resultados para Fuel switching
Resumo:
Significant improvements in the spatial and temporal uniformities of device switching parameters are successfully demonstrated in Ge/TaOx bilayer-based resistive switching devices, as compared with non-Ge devices. In addition, the reported Ge/TaOx devices also show significant reductions in the operation voltages. Influence of the Ge layer on the resistive switching of TaOx-based resistive random access memory is investigated by X-ray spectroscopy and the theory of Gibbs free energy. Higher uniformity is attributed to the confinement of the filamentary switching process. The presence of a larger number of interface traps, which will create a beneficial electric field to facilitate the drift of oxygen vacancies, is believed to be responsible for the lower operation voltages in the Ge/TaO x devices. © 1980-2012 IEEE.
Resumo:
High power bandwidth-limited picosecond pulses with peak powers in excess of 200 mW have been generated using multi-contact distributed feedback laser diodes for the first time. The pulses have widths typically less than 10 ps, time-bandwidth products of as little as 0·24, and can be generated on demand at generator limited repetition rates of up to 140 MHz.
Resumo:
Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios, which is desirable to maximize the TRU burning rate. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage TRU burning cycle, where the first stage is Th-Pu MOX in a conventional PWR feeding a second stage continuous burn in RMPWR or RBWR, is technically reasonable, although it is more suitable for the RBWR implementation. In this case, the fuel cycle performance is relatively insensitive to the discharge burn-up of the first stage. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The response to a local, tip-induced electric field of ferroelastic domains in thin polycrystalline lead zirconate titanate films with predominantly (110) orientation has been studied using Enhanced Piezoresponse Force Microscopy. Two types of reversible polytwin switching between well-defined orientations have been observed. When a-c domains are switched to other forms of a-c domains, the ferroelastic domain walls rotate in-plane by 109.5°, and when a-c domains are switched to c-c domains (or vice-versa), the walls rotate by 54.75°. © 2013 AIP Publishing LLC.
Resumo:
Low-cost optical switches based on SLMs have conventionally been considered unsuitable for packet switching due to slow reconfiguration time. In this paper, we demonstrate that the constraint of SLM reconfiguration time in a hybrid three-stage electronic/optical switching node architecture can be compensated through the utilization of MPLS label switching mechanism to achieve the best performance for SAN applications. © 2012 SEE.
On-chip switching of a silicon nitride micro-ring resonator based on digital microfluidics platform.
Resumo:
We demonstrate the switching of a silicon nitride micro ring resonator (MRR) by using digital microfluidics (DMF). Our platform allows driving micro-droplets on-chip, providing control over the effective refractive index at the vicinity of the resonator and thus facilitating the manipulation of the transmission spectrum of the MRR. The device is fabricated using a process that is compatible with high-throughput silicon fabrication techniques with buried highly doped silicon electrodes. This platform can be extended towards controlling arrays of micro optical devices using minute amounts of liquid droplets. Such an integration of DMF and optical resonators on chip can be used in variety of applications, ranging from biosensing and kinetics to tunable filtering on chip.
Resumo:
Significant reduction of the bulk resistivity in a ferroelectric Pb(Zr 0.45Ti0.55)O3 thin film is observed before the remnant polarization started to decrease noticeably at the onset of its fatigue switching process. It is associated with the increase of charge carriers within the central bulk region of the film. The decrease of bulk resistivity would result in the increase of Joule heating effect, improving the temperature of the thin film, which is evaluated by the heat conduction analysis. The Joule heating effect in turn accelerates the polarization reduction, i.e. fatigue. Enhancing the heat dissipation of a ferroelectric capacitor is shown to be able to improve the device's fatigue endurance effectively. © 2013 Chinese Physical Society and IOP Publishing Ltd.
Resumo:
This paper presents a critical comparison of static and switching performance of commercially available 1.2 kV SiC BJTs, MOSFETs and JFETs with 1.2 kV Si IGBTs. The experiments conducted are mainly focussed on investigating the temperature dependence of device performance. As an emerging commercial device, special emphasis is placed on SiC BJTs. The experimental data indicate that the SiC BJTs have relatively smaller conduction, off-state and turn-off switching losses, in comparison to the other devices. Furthermore, SiC BJTs have demonstrated much higher static current gain values in comparison to their silicon counterparts, thereby minimising driver losses. Based on the results, the suitability of SiC devices for high power density applications has been discussed. © 2013 IEEE.
Resumo:
Cascode circuits are useful for driving normally-on wide-bandgap devices, but the switching process must be properly understood to optimise their design. Little detailed consideration has previously been given to this. This paper proposes an idealised mathematical description of the cascode switching process, which is used to show that the stray inductance between the two devices plays a critical role in switching. This idealised model is used to propose methods for optimising cascode performance in different applications. © 2013 IEEE.
Resumo:
Active Voltage Control (AVC) is an implementation of classic Proportional-Derivative (PD) control and multi-loop feedback control to force IGBT to follow a pre-set switching trajectory. The initial objective of AVC was mainly to synchronise the switching of IGBTs connected in series so as to realise voltage balancing between devices. For a single IGBT switching, the AVC reference needs further optimisation. Thus, a predictive manner of AVC reference generation is required to cope with the nonlinear IGBT switching parameters while performing low loss switching. In this paper, an improved AVC structure is adopted along with a revised reference which accommodates the IGBT nonlinearity during switching and is predictive based on current being switched. Experimental and simulation results show that close control of a single IGBT switching is realised. It is concluded that good performance can be obtained, but the proposed method needs careful stability analysis for parameter choice. © 2013 IEEE.
Resumo:
A code-label recognition time of less than 500ps is demonstrated using low-cost FIRfilters. The electronically-processed label provides a control signal from an auto-correlated label. Error-free electronic code-label switching of an optical 10Gb/s signal is demonstrated. © 2010 Optical Society of America.
Resumo:
© 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved. In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.
Resumo:
Fuel treatment is considered a suitable way to mitigate the hazard related to potential wildfires on a landscape. However, designing an optimal spatial layout of treatment units represents a difficult optimization problem. In fact, budget constraints, the probabilistic nature of fire spread and interactions among the different area units composing the whole treatment, give rise to challenging search spaces on typical landscapes. In this paper we formulate such optimization problem with the objective of minimizing the extension of land characterized by high fire hazard. Then, we propose a computational approach that leads to a spatially-optimized treatment layout exploiting Tabu Search and General-Purpose computing on Graphics Processing Units (GPGPU). Using an application example, we also show that the proposed methodology can provide high-quality design solutions in low computing time. © 2013 The Authors. Published by Elsevier B.V.