323 resultados para Turbine engines.
Resumo:
Planet bearings of wind turbine epicyclic gearboxes are considered as one of the most critical components due to their high failure rate. In order to develop effective vibration based detection algorithms for these bearings, a thorough understanding of their vibration signature is required. In this paper, we investigate the vibration behaviour of an epicyclic gearbox in the presence of a defective planet bearing both theoretically and experimentally. We also identify different sources of modulation sidebands using an analytical model which includes ring gear flexibility and planet bearing defects. The findings from this work will help engineers to develop more effective fault detection algorithms.
Resumo:
A model gas turbine burner was employed to investigate spray flames established under globally lean, continuous, swirling conditions. Two types of fuel were used to generate liquid spray flames: palm biodiesel and Jet-A1. The main swirling air flow was preheated to 350°C prior to mixing with airblast-atomized fuel droplets at atmospheric pressure. The global flame structure of flame and flow field were investigated at the fixed power output of 6 kW. Flame chemiluminescence imaging technique was employed to investigate the flame reaction zones, while particle imaging velocimetry (PIV) was utilized to measure the flow field within the combustor. The flow fields of both flames are almost identical despite some differences in the flame reaction zones. © (2013) Trans Tech Publications, Switzerland.
Resumo:
A novel mechanical method of achieving a rapid switch between stoichiometric and lean conditions for SI engines is explored. Two and three throttle configurations, a switch strategy which employs a standard intake manifold and an assembly of pipes and throttle(s), are investigated numerically by using a one-dimensional engine simulation program based on the method of characteristics. The results indicate that it is possible to achieve rapid AFR switch without a torque jump, i.e. unperceptible to the driver. © 1998 Society of Automotive Engineers, Inc.
Resumo:
The measured time-history of the cylinder pressure is the principal diagnostic in the analysis of processes within the combustion chamber. This paper defines, implements and tests a pressure analysis algorithm for a Formula One racing engine in MATLAB1. Evaluation of the software on real data is presented. The sensitivity of the model to the variability of burn parameter estimates is also discussed. Copyright © 1997 Society of Automotive Engineers, Inc.
Resumo:
When gas sample is continuously drawn from the cylinder of an internal combustion engine, the sample that appears at the end of the sampling system corresponds to the in-cylinder content sometime ago because of the finite transit time which is a function of the cylinder pressure history. This variable delay causes a dispersion of the sample signal and makes the interpretation of the signal difficult An unsteady flow analysis of a typical sampling system was carried out for selected engine loads and speeds. For typical engine operation, a window in which the delay is approximately constant may be found. This window gets smaller with increase in engine speed, with decrease in load, and with the increase in exit pressure of the sampling system.
Resumo:
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C. Measurements of PM concentrations as a function of dilution ratio show the competing effects of temperature and particle/vapor concentrations on particle growth dynamics, which result in a range of dilution ratios-from 13 to 18-where the effect of dilution ratio, independent of flowrate, is kept to a minimum. This range of dilution ratios is therefore optimal in order to achieve repeatable PM concentration measurements. Particle dynamics during transit through the tunnel operating at the optimal dilution ratio was found statistically insignificant compared to data scatter. Such small differences in number concentration may be qualitatively representative of particle losses for SI exhaust, but small increases in PM volume fraction during transit through the tunnel may significantly underestimate accretion of mass due to unburned hydrocarbons (HCs) emitted by SI engines. The fraction of SI-derived PM mass due to adsorbed/absorbed vapor, estimated from these data, is consistent with previous chemical analyses of PM. © 1998 Society of Automotive Engineers, Inc.
Resumo:
About 50-90 percent of the hydrocarbons that escape combustion during flame passage in spark-ignition engine operation are oxidized in the cylinder before leaving the system. The process involves the transport of unreacted fuel from cold walls towards the hotter burned gas regions and subsequent reaction. In order to understand controlling factors in the process, a transient one-dimensional reactive-diffusive model has been formulated for simulating the oxidation processes taking place in the reactive layer between hot burned gases and cold unreacted air/fuel mixture, with initial and boundary conditions provided by the emergence of hydrocarbons from the piston top land crevice. Energy and species conservation equations are solved for the entire process, using a detailed chemical kinetic mechanism for propane. Simulation results show that the post-flame oxidation process takes place within a reactive layer where intermediate hydrocarbon products are formed at temperatures above 1100-1200 K, followed by a carbon monoxide conversion region closer to the hot burned gases. Model results show that most of hydrocarbons leaving the crevice are completely oxidized inside the cylinder. The largest contribution of remaining hydrocarbons are those leaving the crevice at temperatures below 1400 K. The largest fraction of non-fuel (intermediate) hydrocarbons results from hydrocarbons leaving the crevice when core temperatures are around 1400 K Copyright © 1997 Society of Automotive Engineers, Inc.
Extent of oxidation of hydrocarbons desorbing from the lubricant oil layer in spark-ignition engines
Resumo:
The extent of oxidation of hydrocarbons desorbing from the oil layer has been measured directly in a hydrogen-fueled, spark-ignited engine in which the lubricant oil was doped with a single component hydrocarbon. The amount of hydrocarbon desorbed and oxidized could be measured simultaneously as the dopant was only source of carbon-containing species. The fraction oxidized was strongly dependent on engine load, hydrogen fuel-air ratio and dopant chemical reactivity, but only modestly dependent on spark timing and nitrogen dilution levels below 20 percent. Fast FID measurements at the cylinder exit showed that the surviving hydrocarbons emerge late in the exhaust stroke. © Copyright 1996 Society of Automotive Engineers, Inc.