428 resultados para Silicon nanotransistor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal quality of 0.3-μm-thick as-grown epitaxial silicon-on-sapphire (SOS) was improved using solid-phase epitaxy (SPE) by implantation with silicon to 1015 ions/cm2 at 175 keV and rapid annealing using electron-beam heating, n-channel and p-channel transistormobilities increased by 31 and 19 percent, respectively, and a reduction in ring-oscillator stage delay confirmed that crystal defects near the upper silicon surface had been removed. Leakage in n-channel transistors was not significantly affected by the regrowth process but for p-channel transistors back-channel leakage was considerably greater than for the control devices. This is attributed to aluminum released by damage to the sapphire during silicon implantation. © 1985 IEEE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate and direction of regrowth of amorphous layers, created by self-implantation, in silicon-on-sapphire (SOS) have been studied using time resolved reflectivity (TRR) experiments performed simultaneously at two wavelengths. Regrowth of an amorphous layer towards the surface was observed in specimens implanted with 3 multiplied by (times) 10**1**5Si** plus /cm**2 at 50keV and regrowth of a buried amorphous layer, from a surface seed towards the sapphire, was observed in specimens implanted with 1 multiplied by (times) 10**1**5Si** plus /cm**2 at 175keV. Rapid isothermal heating to regrow the layers was performed in an electron beam annealing system. The combination of 514. 5nm and 632. 8nm wavelengths was found to be particularly useful for TRR studies since the high absorption in amorphous silicon, at the shorter wavelength, means that the TRR trace is not complicated by reflection from the silicon-sapphire interface until regrowth is nearly complete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon (a-Si:H) thin films have been deposited from silane using a novel photo-enhanced decomposition technique. The system comprises a hydrogen discharge lamp contained within the reaction vessel; this unified approach allows high energy photon excitation of the silane molecules without absorption by window materials or the need for mercury sensitisation. The film growth rates (exceeding 4 Angstrom/s) and material properties obtained are comparable to those of films produced by plasma-enhanced CVD techniques. The reduction of energetic charged particles in the film growth region should enable the fabrication of cleaner semiconductor/insulator interfaces in thin-film transistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implants of boron into silicon which has been made amorphous by silicon implantation have a shallower depth profile than the same implants into silicon. This results in higher activation and restricted diffusion of the B implants after annealing, and there are also significant differences in the microstructure after annealing compared with B implants into silicon. Rapid isothermal heating with an electron beam and furnace treatments are used to characterize the defect structure as a function of time and temperature. Defects are seen to influence the diffusion of non-substitutional boron.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines the development of the electron beam recrystallization approach to the formation of silicon-on-insulator layers. The technique of recrystallizing seeded layers by a line electron beam has been widely adopted. Present practice in electron beam recrystallization is reviewed, both from materials and process points of view. Applications of silicon-on-insulator substrates formed in this way are described, particularly in three-dimensional integration. © 1988.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the variation of the integrated density of states with conduction activation energy in hydrogenated amorphous silicon thin film transistors. Results are given for two different gate insulator layers, PECVD silicon oxide and thermally grown silicon dioxide. The different gate insulators produce transistors with very different initial transfer characteristics, but the variation of integrated density of states with conduction activation energy is shown to be similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical investigations were conducted of the effect of potential on the luminescence of porous silico (PS). The use of liquid contacts allows the potential to be controlled during studies of the photoluminescence (PL) and electroluminescence (EI). The PL and EL of PS samples prepared from n-type substrates is considered. To obtain luminescence from such PS it is necessary to generate holes in the valence band. This is achieved by either photoexcitation or an electrochemical process involving the reduction of persulfate. This paper describes the investigations of the effect of potential on the PL and EL of PS. A mechanism of 'potential tuning' based on electron occupancy and Auger quenching is then proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lateral insulated gate bipolar transistors (LIGBTs) in silicon-on-insulator (SOI) show a unique turn off characteristic when compared to junction-isolated RESURF LIGBTs or vertical IGBTs. The turn off characteristic shows an extended `terrace' where, after the initial fast transient characteristic of IGBTs due to the loss of the electron current, the current stays almost at the same value for an extended period of time, before suddenly dropping to zero. In this paper, we show that this terrace arises because there is a value of LIGBT current during switch off where the rate of expansion of the depletion region with respect to the anode current is infinite. Once this level of anode current is approached, the depletion region starts to expand very rapidly, and is only stopped when it reaches the n-type buffer layer surrounding the anode. Once this happens, the current rapidly drops to zero. A quasi-static analytic model is derived to explain this behaviour. The analytically modelled turn off characteristic agrees well with that found by numerical simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study has been made of the growth of both hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiN) by electron cyclotron resonance plasma enhanced chemical vapour deposition (ECR-PECVD). In the case of a-SiN, helium and nitrogen gas is injected into the system such that it passes through the resonance zone. These highly ionised gases provide sufficient energy to ionise the silane gas, which is injected further downstream. It is demonstrated that a gas phase reaction occurs between the silane and nitrogen species. It is control of the ratio of silane to nitrogen in the plasma which is critical for the production of stoichiometric a-SiN. Material has been produced at 80°C with a Si:N ratio of 1:1.3 a breakdown strength of ∼6 MV cm-1 and resistivity of > 1014 Ω cm. In the case of a-Si:H, helium and hydrogen gas is injected into the ECR zone and silane is injected downstream. It is shown that control of the gas phase reactions is critical in this process also. a-Si:H has been deposited at 80 °C with a dark conductivity of 10-11 Ω-1 cm-1 and a photosensitivity of justbelowl 4×104. Such materials are suitable for use in thin film transistors on plastic substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper will review the different U. V. lamp photo-CVD (Chemical Vapor Deposition) techniques which have been utilized for the production of highly photoconductive hydrogenated amorphous silicon (a-Si:H) thin films. Most of these require the transmission of U. V. light through a window into the reaction vessel; leading to unwanted U. V. light absorption by the window and the a-Si:H film which tends to form on its inner surface. A deposition system developed in our laboratory will also be described, which circumvents these problems by incorporating a windowless discharge lamp into the reaction vessel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin film transistors (TFTs) utilizing an hydrogenated amorphous silicon (a-Si:H) channel layer exhibit a shift in the threshold voltage with time under the application of a gate bias voltage due to the creation of metastable defects. These defects are removed by annealing the device with zero gate bias applied. The defect removal process can be characterized by a thermalization energy which is, in turn, dependent upon an attempt-to-escape frequency for defect removal. The threshold voltage of both hydrogenated and deuterated amorphous silicon (a-Si:D) TFTs has been measured as a function of annealing time and temperature. Using a molecular dynamics simulation of hydrogen and deuterium in a silicon network in the H2 * configuration, it is shown that the experimental results are consistent with an attempt-to-escape frequency of (4.4 ± 0.3) × 1013 Hz and (5.7 ± 0.3) × 1013 Hz for a-Si:H and a-Si:D respectively which is attributed to the oscillation of the Si-H and Si-D bonds. Using this approach, it becomes possible to describe defect removal in hydrogenated and deuterated material by the thermalization energies of (1.552 ± 0.003) eV and (1.559 ± 0.003) eV respectively. This correlates with the energy per atom of the Si-H and Si-D bonds. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CMOS nanocrystalline silicon thin film transistors with high field effect mobility are reported. The transistors were directly deposited by radio-frequency plasma enhanced chemical vapor deposition at 150°C The transistors show maximum field effect mobility of 450 cm2/V-s for electrons and 100 cm2/V-s for holes at room temperature. We attribute the high mobilities to a reduction of the oxygen content, which acts as an accidental donor. Indeed, secondary ion mass spectrometry measurements show that the impurity concentration in the nanocrystalline Si layer is comparable to, or lower than, the defect density in the material, which is already low thanks to hydrogen passivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarization-insensitivity is achieved in a reflective spatial light modulator by laying a quarter-wave plate (QWP) at the incident wavelength directly over the mirror pixels of a silicon backplane, and forming a nematle Fréedrickcz cell over the QWP to modulate the reflected phase. To achieve the highest drive voltage from the available silicon process, a switched voltage common front electrode design is described, with variable amplitude square wave drive to the pixels to maintain constant root-mean-square drive and minimize phase fluctuations during the dc balance refresh cycle. The silicon has been fabricated and liquid-crystal-on-silicon cells both with and without the QWP assembled; applications include optically transparent switches for optical networks, beam steering for add-drop multiplexers for wavelength-division- multiplexing telecommunications, television multicast, and holographic projection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A packaging technique suited to applying MEMS strain sensors realized on a silicon chip to a steel flat surface is described. The method is based on adhesive bonding of the silicon chip rear surface on steel using two types of glue normally used for standard piezoresistive strain sensors (Mbond200/ 600), using direct wire bonding of the chip to a Printed Circuit Board, also fixed on steel. In order to protect the sensor from the external environment, and to improve the MEMS performance, the silicon chip is encapsulated with a metal cap hermetically sealed-off under vacuum condition with a vacuum adhesive in which the bonding wires are also protected from possible damage. In order to evaluate the mechanical coupling of the silicon chip with the bar and thestress transfer extent to the silicon surface, commercial strain sensors have been applied on the chip glued on a steel bar in alaboratory setup able to generate strain by inflection, yielding a stress transfer around 70% from steel to silicon. © 2008 IEEE.