50 resultados para trajectories
Resumo:
Humans appear to be sensitive to relative small changes in their surroundings. These changes are often initially perceived as irrelevant, but they can cause significant changes in behavior. However, how exactly people's behavior changes is often hard to quantify. A reliable and valid tool is needed in order to address such a question, ideally measuring an important point of interaction, such as the hand. Wearable-body-sensor systems can be used to obtain valuable, behavioral information. These systems are particularly useful for assessing functional interactions that occur between the endpoints of the upper limbs and our surroundings. A new method is explored that consists of computing hand position using a wearable sensor system and validating it against a gold standard reference measurement (optical tracking device). Initial outcomes related well to the gold standard measurements (r = 0.81) showing an acceptable average root mean square error of 0.09 meters. Subsequently, the use of this approach was further investigated by measuring differences in motor behavior, in response to a changing environment. Three subjects were asked to perform a water pouring task with three slightly different containers. Wavelet analysis was introduced to assess how motor consistency was affected by these small environmental changes. Results showed that the behavioral motor adjustments to a variable environment could be assessed by applying wavelet coherence techniques. Applying these procedures in everyday life, combined with correct research methodologies, can assist in quantifying how environmental changes can cause alterations in our motor behavior.
Resumo:
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.
Resumo:
Using fluorescence microscopy with single molecule sensitivity it is now possible to follow the movement of individual fluorophore tagged molecules such as proteins and lipids in the cell membrane with nanometer precision. These experiments are important as they allow many key biological processes on the cell membrane and in the cell, such as transcription, translation and DNA replication, to be studied at new levels of detail. Computerized microscopes generate sequences of images (in the order of tens to hundreds) of the molecules diffusing and one of the challenges is to track these molecules to obtain reliable statistics such as speed distributions, diffusion patterns, intracellular positioning, etc. The data set is challenging because the molecules are tagged with a single or small number of fluorophores, which makes it difficult to distinguish them from the background, the fluorophore bleaches irreversibly over time, the number of tagged molecules are unknown and there is occasional loss of signal from the tagged molecules. All these factors make accurate tracking over long trajectories difficult. Also the experiments are technically difficulty to conduct and thus there is a pressing need to develop better algorithms to extract the maximum information from the data. For this purpose we propose a Bayesian approach and apply our technique to synthetic and a real experimental data set.
Resumo:
The study of pair-wise interactions between swimming microorganisms is fundamental to the understanding of the rheological and transport properties of semi-dilute suspensions. In this paper, the hydrodynamic interaction of two ciliated microorganisms is investigated numerically using a boundary-element method, and the microorganisms are modeled as spherical squirmers that swim by time-dependent surface deformations. The results show that the inclusion of the unsteady terms in the ciliary propulsion model has a large impact on the trajectories of the interacting cells, and causes a significant change in scattering angles with potential important consequences on the diffusion properties of semi-dilute suspensions. Furthermore, the analysis of the shear stress acting on the surface of the microorganisms revealed that the duration and the intensity of the near-field interaction are significantly modified by the presence of unsteadiness. This observation may account for the hydrodynamic nature of randomness in some biological reactions, and supersedes the distinction between intrinsic randomness and hydrodynamic interactions, adding a further element to the understanding and modeling of interacting microorganisms.
Resumo:
A decision is a commitment to a proposition or plan of action based on evidence and the expected costs and benefits associated with the outcome. Progress in a variety of fields has led to a quantitative understanding of the mechanisms that evaluate evidence and reach a decision. Several formalisms propose that a representation of noisy evidence is evaluated against a criterion to produce a decision. Without additional evidence, however, these formalisms fail to explain why a decision-maker would change their mind. Here we extend a model, developed to account for both the timing and the accuracy of the initial decision, to explain subsequent changes of mind. Subjects made decisions about a noisy visual stimulus, which they indicated by moving a handle. Although they received no additional information after initiating their movement, their hand trajectories betrayed a change of mind in some trials. We propose that noisy evidence is accumulated over time until it reaches a criterion level, or bound, which determines the initial decision, and that the brain exploits information that is in the processing pipeline when the initial decision is made to subsequently either reverse or reaffirm the initial decision. The model explains both the frequency of changes of mind as well as their dependence on both task difficulty and whether the initial decision was accurate or erroneous. The theoretical and experimental findings advance the understanding of decision-making to the highly flexible and cognitive acts of vacillation and self-correction.
Resumo:
The near-surface motility of bacteria is important in the initial formation of biofilms and in many biomedical applications. The swimming motion of Escherichia coli near a solid surface is investigated both numerically and experimentally. A boundary element method is used to predict the hydrodynamic entrapment of E. coli bacteria, their trajectories, and the minimum separation of the cell from the surface. The numerical results show the existence of a stable swimming distance from the boundary that depends only on the shape of the cell body and the flagellum. The experimental validation of the numerical approach allows one to use the numerical method as a predictive tool to estimate with reasonable accuracy the near-wall motility of swimming bacteria of known geometry. The analysis of the numerical database demonstrated the existence of a correlation between the radius of curvature of the near-wall circular trajectory and the separation gap. Such correlation allows an indirect estimation of either of the two quantities by a direct measure of the other without prior knowledge of the cell geometry. This result may prove extremely important in those biomedical and technical applications in which the near-wall behavior of bacteria is of fundamental importance.
Resumo:
In this paper, a Decimative Spectral estimation method based on Eigenanalysis and SVD (Singular Value Decomposition) is presented and applied to speech signals in order to estimate Formant/Bandwidth values. The underlying model decomposes a signal into complex damped sinusoids. The algorithm is applied not only on speech samples but on a small amount of the autocorrelation coefficients of a speech frame as well, for finer estimation. Correct estimation of Formant/Bandwidth values depend on the model order thus, the requested number of poles. Overall, experimentation results indicate that the proposed methodology successfully estimates formant trajectories and their respective bandwidths.
Resumo:
High-altitude relight inside a lean-direct-injection gas-turbine combustor is investigated experimentally by highspeed imaging. Realistic operating conditions are simulated in a ground-based test facility, with two conditions being studied: one inside and one outside the combustor ignition loop. The motion of hot gases during the early stages of relight is recorded using a high-speed camera. An algorithm is developed to track the flame movement and breakup, revealing important characteristics of the flame development process, including stabilization timescales, spatial trajectories, and typical velocities of hot gas motion. Although the observed patterns of ignition failure are in broad agreement with results from laboratory-scale studies, other aspects of relight behavior are not reproduced in laboratory experiments employing simplified flow geometries and operating conditions. For example, when the spark discharge occurs, the air velocity below the igniter in a real combustor is much less strongly correlated to ignition outcome than laboratory studies would suggest. Nevertheless, later flame development and stabilization are largely controlled by the cold flowfield, implying that the location of the igniter may, in the first instance, be selected based on the combustor cold flow. Copyright © 2010.
Resumo:
This paper describes the application of variable-horizon model predictive control to trajectory generation in surface excavation. A nonlinear dynamic model of a surface mining machine digging in oil sand is developed as a test platform. This model is then stabilised with an inner-loop controller before being linearised to generate a prediction model. The linear model is used to design a predictive controller for trajectory generation. A variable horizon formulation is augmented with extra terms in the cost function to allow more control over digging, whilst still preserving the guarantee of finite-time completion. Simulations show the generation of realistic trajectories, motivating new applications of variable horizon MPC for autonomy that go beyond the realm of vehicle path planning. ©2010 IEEE.
Resumo:
This study compared adaptation in novel force fields where trajectories were initially either stable or unstable to elucidate the processes of learning novel skills and adapting to new environments. Subjects learned to move in a null force field (NF), which was unexpectedly changed either to a velocity-dependent force field (VF), which resulted in perturbed but stable hand trajectories, or a position-dependent divergent force field (DF), which resulted in unstable trajectories. With practice, subjects learned to compensate for the perturbations produced by both force fields. Adaptation was characterized by an initial increase in the activation of all muscles followed by a gradual reduction. The time course of the increase in activation was correlated with a reduction in hand-path error for the DF but not for the VF. Adaptation to the VF could have been achieved solely by formation of an inverse dynamics model and adaptation to the DF solely by impedance control. However, indices of learning, such as hand-path error, joint torque, and electromyographic activation and deactivation suggest that the CNS combined these processes during adaptation to both force fields. Our results suggest that during the early phase of learning there is an increase in endpoint stiffness that serves to reduce hand-path error and provides additional stability, regardless of whether the dynamics are stable or unstable. We suggest that the motor control system utilizes an inverse dynamics model to learn the mean dynamics and an impedance controller to assist in the formation of the inverse dynamics model and to generate needed stability.
Resumo:
Humans are able to stabilize their movements in environments with unstable dynamics by selectively modifying arm impedance independently of force and torque. We further investigated adaptation to unstable dynamics to determine whether the CNS maintains a constant overall level of stability as the instability of the environmental dynamics is varied. Subjects performed reaching movements in unstable force fields of varying strength, generated by a robotic manipulator. Although the force fields disrupted the initial movements, subjects were able to adapt to the novel dynamics and learned to produce straight trajectories. After adaptation, the endpoint stiffness of the arm was measured at the midpoint of the movement. The stiffness had been selectively modified in the direction of the instability. The stiffness in the stable direction was relatively unchanged from that measured during movements in a null force field prior to exposure to the unstable force field. This impedance modification was achieved without changes in force and torque. The overall stiffness of the arm and environment in the direction of instability was adapted to the force field strength such that it remained equivalent to that of the null force field. This suggests that the CNS attempts both to maintain a minimum level of stability and minimize energy expenditure.
Resumo:
The exponential increase of industrial demand in the past two decades has led scientists to the development of alternative technologies for the fast manufacturing of engineering components, aside from standard and time consuming techniques such as casting or forging.Cold Spray (CS) is a newly developed manufacturing technique, based upon the deposition of metal powder on a substrate due to high energy particle impacts. In this process, the powder is accelerated up to considerable speed in a converging-diverging nozzle, typically using air, nitrogen or helium as a carrier gas. Recent developments have demonstrated significant process capabilities, from the building of mold-free 3D shapes made of various metals, to low porosity and corrosion resistant titanium coatings.In CS, the particle stream characteristics during the acceleration process are important in relation to the final geometry of the coating. Experimental studies have shown the tendency of particles to spread over the nozzle acceleration channel, resulting in a wide exit stream and in the difficulty of producing narrow tracks.This paper presents an investigation on the powder stream characteristics in CS supersonic nozzles. The powder insertion location was varied within the carrier gas flow, along with the geometry of the powder injector, in order to identify their relation with particle trajectories. Computational Fluid Dynamics (CFD) results by Fluent v6.3.26 are presented, along with experimental observations. Different configurations were tested and modeled, giving deposited track geometries of copper and tin ranging from 1. mm to 8. mm in width on metal and polymer substrates. © 2011 Elsevier B.V.
Resumo:
New firms in emerging industries are subject to complex dynamic processes which defy the attempts at prediction embodied in business conjectures. Discontinuous growth is common, but the issue of interruptions in the early growth of new firms has not been adequately addressed in the mainstream literature. We examine the prevalence of interruptions to growth in a cohort study of the growth trajectories of firms founded in 1990, then look to cases studies of individual firms to investigate underlying causes. We find that substantial growth is rare and continuous growth unusual, and that growth interruptions are the result of both internal and external dynamics. The managers of growing firms face shortages of vital resources and significant problems of resource synchronisation and coordination, many of which can lead to what are, in effect, changes of phase state. Meanwhile, the volatile environment of an emerging industry presents particular problems to young firms which have not yet built up reserves to sustain them through short-term crises. However, problem solving by those that survive provides an important source of learning which can underpin their future development. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
We present a novel framework for identifying and tracking dominant agents in groups. Our proposed approach relies on a causality detection scheme that is capable of ranking agents with respect to their contribution in shaping the system's collective behaviour based exclusively on the agents' observed trajectories. Further, the reasoning paradigm is made robust to multiple emissions and clutter by employing a class of recently introduced Markov chain Monte Carlo-based group tracking methods. Examples are provided that demonstrate the strong potential of the proposed scheme in identifying actual leaders in swarms of interacting agents and moving crowds. © 2011 IEEE.
Resumo:
The objective of this paper is to propose a signal processing scheme that employs subspace-based spectral analysis for the purpose of formant estimation of speech signals. Specifically, the scheme is based on decimative spectral estimation that uses Eigenanalysis and SVD (Singular Value Decomposition). The underlying model assumes a decomposition of the processed signal into complex damped sinusoids. In the case of formant tracking, the algorithm is applied on a small amount of the autocorrelation coefficients of a speech frame. The proposed scheme is evaluated on both artificial and real speech utterances from the TIMIT database. For the first case, comparative results to standard methods are provided which indicate that the proposed methodology successfully estimates formant trajectories.