17 resultados para tin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a study on electrical and optical characteristics of n-type tin-oxide nanowires integrated based on top-down scale-up strategy. Through a combination of contact printing and plasma based back-channel passivation, we have achieved stable electrical characteristics with standard deviation in mobility and threshold voltage of 9.1% and 25%, respectively, for a large area of 1× 1 cm2 area. Through use of contact printing, high alignment of nanowires was achieved thus minimizing the number of nanowire-nanowire junctions, which serve to limit carrier transport in the channel. In addition, persistent photoconductivity has been observed, which we attribute to oxygen vacancy ionization and subsequent elimination using a gate pulse driving scheme. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compare the performance of a typical hole transport layer for organic photovoltaics (OPVs), Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin film with a series of PEDOT:PSS layers doped with silver (Ag) nanoparticles (NPs) of various size distributions. These hybrid layers have attracted great attention as buffer layers in plasmonic OPVs, although there is no report up to date on their isolated performance. In the present study we prepared a series of PEDOT:PSS layers sandwiched between indium tin oxide (ITO) and gold (Au) electrodes. Ag NPs were deposited on top of the ITO by electron beam evaporation followed by spin coating of PEDOT:PSS. Electrical characterization performed in the dark showed linear resistive behavior for all the samples; lower resistance was observed for the hybrid ones. It was found that the resistivity of the samples decreases with increasing the particle's size. A substantial increase of the electric field between the ITO and the Au electrodes was seen through the formation of current paths through the Ag NPs. A striking observation is the slight increase in the slope of the current density versus voltage curves when measured under illumination for the case of the plasmonic layers, indicating that changes in the electric field in the vicinity of the NP due to plasmonic excitation is a non-vanishing factor. © 2014 Published by Elsevier B.V. All rights reserved.