46 resultados para time-resolved


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved particle image velocimetry (PIV) has been performed inside the nozzle of a commercially available inkjet print-head to obtain the time-dependent velocity waveform. A printhead with a single transparent nozzle 80 μm in orifice diameter was used to eject single droplets at a speed of 5 m/s. An optical microscope was used with an ultra-high-speed camera to capture the motion of particles suspended in a transparent liquid at the center of the nozzle and above the fluid meniscus at a rate of half a million frames per second. Time-resolved velocity fields were obtained from a fluid layer approximately 200 μm thick within the nozzle for a complete jetting cycle. A Lagrangian finite-element numerical model with experimental measurements as inputs was used to predict the meniscus movement. The model predictions showed good agreement with the experimental results. This work provides the first experimental verification of physical models and numerical simulations of flows within a drop-on-demand nozzle. © 2012 Society for Imaging Science and Technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding mixture formation phenomena during the first few cycles of an engine cold start is extremely important for achieving the minimum engine-out emission levels at the time when the catalytic converter is not yet operational. Of special importance is the structure of the charge (film, droplets and vapour) which enters the cylinder during this time interval as well as its concentration profile. However, direct experimental studies of the fuel behaviour in the inlet port have so far been less than fully successful due to the brevity of the process and lack of a suitable experimental technique. We present measurements of the hydrocarbon (HC) concentration in the manifold and port of a production SI engine using the Fast Response Flame Ionisation Detector (FRFID). It has been widely reported in the past few years how the FRFID can be used to study the exhaust and in-cylinder HC concentrations with a time resolution of a few degrees of crank angle, and the device has contributed significantly to the understanding of unburned HC emissions. Using the FRFID in the inlet manifold is difficult because of the presence of liquid droplets, and the low and fluctuating pressure levels, which leads to significant changes in the response time of the instrument. However, using recently developed procedures to correct for the errors caused by these effects, the concentration at the sampling point can be reconstructed to align the FRFID signal with actual events in the engine. © 1996 Society of Automotive Engineers, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used transient terahertz photoconductivity measurements to assess the efficacy of two-temperature growth and core-shell encapsulation techniques on the electronic properties of GaAs nanowires. We demonstrate that two-temperature growth of the GaAs core leads to an almost doubling in charge-carrier mobility and a tripling of carrier lifetime. In addition, overcoating the GaAs core with a larger-bandgap material is shown to reduce the density of surface traps by 82%, thereby enhancing the charge conductivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A direct comparison between time resolved PLIF measurements of OH and two dimensional slices from a full three dimensional DNS data set of turbulent premixed flame kernels in lean methane/air mixture was presented. The local flame structure and the degree of flame wrinkling were examined in response to differing turbulence intensities and turbulent Reynolds numbers. Simulations were performed using the SEGA DNS code, which is based on the solution of the compressible Navier Stokes, species, and energy equations for a lean hydrocarbon mixture. For the OH PLIF measurements, a cluster of four Nd:YAG laser was fired sequentially at high repetition rates and used to pump a dye laser. The frequency doubled laser beam was formed into a sheet of 40 mm height using a cylindrical telescope. The combination of PLIF and DNS has been demonstrated as a powerful tool for flame analysis. This research will form the basis for the development of sub-grid-scale (SGS) models for LES of lean-premixed combustion systems such as gas turbines. This is an abstract of a paper presented at the 30th International Symposium on Combustion (Chicago, IL 7/25-30/2004).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results are given for bistable effects in closely coupled twin stripe lasers. These devices use controlled adjustment of asymmetric transverse optical gain to obtain bistability. Various bistable effects have been observed. Initially the authors reported a large light/current hysteresis loop obtained as the drive current to the laser was raised and lowered. Information concerning the bistable mechanisms was then obtained by applying small current pulses into each stripe. It was thus found that bistability was involved with the switching from one stable laser waveguiding mechanism to another. More recently the experimental measurement system has been much improved. Through the use of computer control of motorised micromovements and computer controlled data management, time resolved near and far field, and charge carrier concentration distribution measurements have been more accurately carried out. The paper will outline briefly this system, and report on how it has helped to reveal new mechanisms of bistability in twin stripe lasers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rate and direction of regrowth of amorphous layers, created by self-implantation, in silicon-on-sapphire (SOS) have been studied using time resolved reflectivity (TRR) experiments performed simultaneously at two wavelengths. Regrowth of an amorphous layer towards the surface was observed in specimens implanted with 3 multiplied by (times) 10**1**5Si** plus /cm**2 at 50keV and regrowth of a buried amorphous layer, from a surface seed towards the sapphire, was observed in specimens implanted with 1 multiplied by (times) 10**1**5Si** plus /cm**2 at 175keV. Rapid isothermal heating to regrow the layers was performed in an electron beam annealing system. The combination of 514. 5nm and 632. 8nm wavelengths was found to be particularly useful for TRR studies since the high absorption in amorphous silicon, at the shorter wavelength, means that the TRR trace is not complicated by reflection from the silicon-sapphire interface until regrowth is nearly complete.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previously published measurements in a low-speed, single-stage, axial-flow turbine have been reanalyzed in the light of more recent understanding. The measurements include time-resolved hot-wire traverses and surface hot film gage measurements at the midspan of the rotor suction surface with three different rotor-stator spacings. This paper investigates the suction surface boundary layer transition process, using surface-distance time plots and boundary layer cross sections to demonstrate the unsteady and two-dimensional nature of the process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. It was found that in addition to upstream vane-rotor and rotor-downstream vane interactions, a new interaction mechanism was found resulting from the interaction between the downstream vane's potential field and the upstream vane's trailing edge potential field and shock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The composition of the time-resolved surface pressure field around a high-pressure rotor blade caused by the presence of neighboring blade rows was studied, with the individual effects of wake, shock and potential field interaction being determined. Two test geometries were considered: first, a high-pressure turbine stage coupled with a swan-necked diffuser exit duct; secondly, the same high-pressure stage but with a vane located in the downstream duct. Both tests were carried out at engine-representative Mach and Reynolds numbers. By comparing the results to time-resolved computational predictions of the flowfield, the accuracy with which the computation predicts blade interaction was determined. Evidence was obtained that for a large downstream vane, the flow conditions in the rotor passage, at any instant in time, are close to being steady state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes both the migration and dissipation of flow phenomena downstream of a transonic high-pressure turbine stage. The geometry of the HP stage exit duct considered is a swan-necked diffuser similar to those likely to be used in future engine designs. The paper contains results both from an experimental programme in a turbine test facility and from numerical predictions. Experimental data was acquired using three fast-response aerodynamic probes capable of measuring Mach number, whirl angle, pitch angle, total pressure and static pressure. The probes were used to make time-resolved area traverses at two axial locations downstream of the rotor trailing edge. A 3D time-unsteady viscous Navier-Stokes solver was used for the numerical predictions. The unsteady exit flow from a turbine stage is formed from rotordependent phenomena (such as the rotor wake, the rotor trailing edge recompression shock, the tip-leakage flow and the hub secondary flow) and vane-rotor interaction dependant phenomena. This paper describes the time-resolved behaviour and three-dimensional migration paths of both of these phenomena as they convect downstream. It is shown that the inlet flow to a downstream vane is dominated by two corotating vortices, the first caused by the rotor tip-leakage flow and the second by the rotor hub secondary flow. At the inlet plane of the downstream vane the wake is extremely weak and the radial pressure gradient is shown to have caused the majority of the high loss wake fluid to be located between the mid-height of the passage and the casing wall. The structure of the flow indicates that between a high pressure stage and a downstream vane simple two-dimensional blade row interaction does not occur. The results presented in this paper indicate that the presence of an upstream stage is likely to significantly alter the structure of the secondary flow within a downstream vane. The paper also shows that vane-rotor interaction within the upstream stage causes a 10° circumferential variation in the inlet flow angle of the 2nd stage vane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interaction between a high-pressure rotor and a downstream vane is dominated by vortex-blade interaction. Each rotor blade passing period two co-rotating vortex pairs, the tip-leakage and upper passage vortex and the lower passage and trailing shed vortex, impinge on, and are cut by, the vane leading edge. In addition to the streamwise vortex the tip-leakage flow also contains a large velocity deficit. This causes the interaction of the tip-leakage flow with a downstream vane to differ from typical vortex blade interaction. This paper investigates the effect these interaction mechanisms have on a downstream vane. The test geometry considered was a low aspect ratio second stage vane located within a S-shaped diffuser with large radius change mounted downstream of a shroudless high-pressure turbine stage. Experimental measurements were conducted at engine-representative Mach and Reynolds numbers, and data was acquired using a fast-response aerodynamic probe upstream and downstream of the vane. Time-resolved numerical simulations were undertaken with and without a rotor tip gap in order to investigate the relative magnitude of the interaction mechanisms. The presence of the upstream stage is shown to significantly change the structure of the secondary flow in the vane and to cause a small drop in its performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the effect of a single spanwise 2D wire upon the downstream position of boundary layer transition under steady and unsteady inflow conditions. The study is carried out on a high turning, high-speed, low pressure turbine (LPT) profile designed to take account of the unsteady flow conditions. The experiments were carried out in a transonic cascade wind tunnel to which a rotating bar system had been added. The range of Reynolds and Mach numbers studied includes realistic LPT engine conditions and extends up to the transonic regime. Losses are measured to quantify the influence of the roughness with and without wake passing. Time resolved measurements such as hot wire boundary layer surveys and surface unsteady pressure are used to explain the state of the boundary layer. The results suggest that the effect of roughness on boundary layer transition is a stability governed phenomena, even at high Mach numbers. The combination of the effect of the roughness elements with the inviscid Kelvin-Helmholtz instability responsible for the rolling up of the separated shear layer (Stieger [1]) is also examined. Wake traverses using pneumatic probes downstream of the cascade reveal that the use of roughness elements reduces the profile losses up to exit Mach numbers of 0.8. This occurs with both steady and unsteady inflow conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper considers the effect of the rotor tip on the casing heat load of a transonic axial flow turbine. The aim of the research is to understand the dominant causes of casing heat-transfer. Experimental measurements were conducted at engine-representative Mach number, Reynolds number and stage inlet to casing wall temperature ratio. Time-resolved heat-transfer coefficient and gas recovery temperature on the casing were measured using an array of heat-transfer gauges. Time-resolved static pressure on the casing wall was measured using Kulite pressure transducers. Time-resolved numerical simulations were undertaken to aid understanding of the mechanism responsible for casing heat load. The results show that between 35% and 60% axial chord the rotor tip-leakage flow is responsible for more than 50% of casing heat transfer. The effects of both gas recovery temperature and heat transfer coefficient were investigated separately and it is shown that an increased stagnation temperature in the rotor tip gap dominates casing heat-transfer. In the tip gap the stagnation temperature is shown to rise above that found at stage inlet (combustor exit) by as much as 35% of stage total temperature drop. The rise in stagnation temperature is caused by an isentropic work input to the tip-leakage fluid by the rotor. The size of this mechanism is investigated by computationally tracking fluid path-lines through the rotor tip gap to understand the unsteady work processes that occur. Copyright © 2005 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the effects of wake/leading-edge interactions were studied at off-design conditions. Measurements were performed on the stator-blade suction surface at midspan. The leading-edge flow-field was investigated using hotwire micro-traverses, hotfilm surface shear-stress sensors and pressure micro-tappings. The trailing-edge flow-field was investigated using hotwire boundary-layer traverses. Unsteady CFD calculations were also performed to aid the interpretation of the results. At low flow coefficients, the time-averaged momentum thickness of the leading-edge boundary layer was found to rise as the flow coefficient was reduced. The time-resolved momentum-thickness rose due to the interaction of the incoming rotor wake. As the flow coefficient was reduced, the incoming wakes increased in pitch-wise extent, velocity deficit and turbulence intensity. This increased both the time-resolved rise in the momentum thickness and the turbulent spot production within the wake affected boundary-layer. Close to stall, a drop in the leading-edge momentum thickness was observed in-between wake events. This was associated with the formation of a leading-edge separation bubble in-between wake events. The wake interaction with the bubble gave rise to a shedding phenomenon, which produced large length scale disturbances in the surface shear stress. Copyright © 2008 by ASME.